

EOxServer’s Documentation

EOxServer is a Python application and framework for presenting Earth
Observation (EO) data and metadata.

EOxServer implements the OGC [http://www.opengeospatial.org/]
Implementation Specifications EO-WCS and EO-WMS on top of
MapServer’s [http://mapserver.org]
WCS [http://www.opengeospatial.org/standards/wcs] and
WMS [http://www.opengeospatial.org/standards/wms] implementations.

EOxServer is released under the
EOxServer Open License a MIT-style
license and written in Python [http://www.python.org/] and entirely based on
Open Source software including MapServer [http://mapserver.org],
Django/GeoDjango [https://www.djangoproject.com],
GDAL [http://www.gdal.org],
SpatiaLite [http://www.gaia-gis.it/spatialite/], or
PostGIS [http://postgis.refractions.net/], and
PROJ.4 [http://trac.osgeo.org/proj/].

Here you find the documentation for users and developers of EOxServer
written in English.

	Users’ Guide

	Developers’ Guide

	Requests for Comments

	Release Notes

	API Reference

	License

	Credits

Indices and tables

	Index

	Module Index

	Search Page

Users’ Guide

This section is intended for users of the EOxServer software stack. Users range
from administrators installing and configuring the software stack and operators
registering the available EO Data on the Provider side to end users
consuming the registered EO Data on the User side.

[image: ../_images/Global_Use_Case1.png]

Developers needing to know all the nitty-gritty about EOxServer implementation
and APIs please refer to the Developers’ Guide.

	EOxServer Basics
	Introduction
	What is EOxServer?

	What are the main features of EOxServer?

	Where can I get it?

	Where can I get support?

	EOxServer Documentation

	Demonstration Services

	Data Model

	Service Model
	Web Coverage Service

	Web Map Service

	Web Processing Service

	Global Use Case
	The General Provider View
	Environment & Software Configuration

	Data Registration

	The General User View
	Web Browser

	GIS Tool

	Installation
	Dependencies

	Installing EOxServer

	Upgrading EOxServer

	Hardware Guidelines

	Installation on CentOS
	Prerequisites

	Installation from RPM Packages
	Preparation of RPM Repositories

	Installing EOxServer

	Alternate installation method using pip
	Required Software Packages

	Installing EOxServer

	Special pysqlite considerations

	Service Instance Creation and Configuration
	Instance Creation

	Instance Configuration

	Database Setup

	Deployment

	Data Registration

	Recommendations for Operational Installation
	Introduction EOxServer

	Directory Structure

	User Management
	Operating System Users

	Database User

	Django Sysadmin

	Application User Management

	EOxServer Configuration Step-by-step
	Step 1 - Web Server Installation

	Step 2 - Database Backend

	Step 3 - Creating Users and Directories for Instance and Data

	Step 4 - Instance Creation

	Step 5 - Database Setup

	Step 6 - Web Server Integration

	Step 7 - Start Operating the Instance

	Migration
	Migration from 0.3 to 0.4

	Migration from 0.2 to 0.3
	Disclaimer

	Preparatory steps

	Software upgrade

	Instance migration

	New configuration options

	Mailing Lists
	Users Mailing List

	Dev Mailing List

	Demonstration
	GetCapabilities

	DescribeCoverage

	DescribeEOCoverageSet
	Dataset

	StitchedMosaic

	DatasetSeries

	GetCoverage

	GetCoverage POST/XML

	EO-WCS Request Parameters
	GetCapabilities

	DescribeCoverage

	DescribeEOCoverageSet

	GetCoverage

	OpenSearch
	Introduction

	Setup

	Usage
	Collection Search

	Record Search

	Parameters

	Output Formats
	ATOM and RSS

	GeoJSON and KML

	Enabling/Disabling Formats

	Future Work

	EOxServer Operators’ Guide
	Basic Concepts

	Storage Backends
	Local

	FTP Repositories

	Rasdaman Databases

	Data Items

	Coverages
	Range Types

	Rectified Datasets

	Referenceable Datasets

	Rectified Stitched Mosaics

	Dataset Series

	Data Preparation and Supported Data Formats
	Raster Data Formats

	Raster Data Preparation

	Metadata Formats

	Metadata Preparation

	Admin Client
	Creating a custom Range Type

	Creating a Dataset

	Creating a Dataset Series or a Stitched Mosaic

	Command Line Tools
	eoxserver-instance.py

	eoxs_dataset_register

	eoxs_dataset_deregister

	Updating Datasets

	eoxs_collection_create

	eoxs_collection_delete

	eoxs_collection_link and eoxs_collection_unlink

	eoxs_collection_purge

	eoxs_collection_datasource

	eoxs_collection_synchronize

	eoxs_id_check

	Range Type Handling

	Performance

	The Webclient Interface
	Enable the Webclient Interface

	Using the webclient interface

	Identity Management System
	Installation and Configuration
	Prerequisites

	LDAP Directory

	Authorisation Service

	General Configuration for CHARON services

	HTTP and SOAP Specific Components
	HTTP Components

	SOAP Components

	SOAP Proxy
	SOAP Access to WCS

	Installation
	Quick installation guide for EOxServer on CentOS

	Old installation guide without rpms

	EOxServer Presentations
	FOSS4G 2011, Denver

	AGIT 2011, Salzburg

	HMA-AWG February 2012, ESA ESRIN

	FOSSGIS 2012, Dessau

	Linuxwochen Wien 2012

	FOSS4G-CEE 2012, Prague

	HMA-AWG June 2012, ESA ESRIN

	Sentinel-3 OLCI/SLSTR and MERIS/(A)ATSR workshop 2012, ESA ESRIN

	SOMAP 2012, Vienna

	Configuration Options
	[core.system]

	[processing.gdal.reftools]

	[backends.cache]

	[resources.coverages.coverage_id]

	[services.owscommon]

	[services.ows]

	[services.ows.wms]

	[services.ows.wcs]

	[services.ows.wcs20]

	[services.ows.wcst11]

	[services.auth.base]

	[webclient]

	[testing]

	Supported CRSs and Their Configuration
	Coordinate Reference Systems

	Web Map Service

	Web Coverage Service

	Supported Raster File Formats and Their Configuration
	Format Registry

	Format Configuration

	Web Coverage Service - Format Configuration

	Web Coverage Service - Native Format Configuration

	Web Map Service - Format Configuration

	References

	Asynchronous Task Processing
	Introduction

	Tasks
	Introduction

	Life-cycle

	ATP Installation and Configuration

	ATP Operation

	ATP Demo Application

	Performance considerations

	Further reading

	Web Coverage Service - Transaction Extension
	Introduction

	Implementation Details
	Configuration

	Adding New Coverages

	Deleting Existing Coverages

	Asynchronous Operation

	References

EOxServer Basics

Table of Contents

	EOxServer Basics
	Introduction
	What is EOxServer?

	What are the main features of EOxServer?

	Where can I get it?

	Where can I get support?

	EOxServer Documentation

	Demonstration Services

	Data Model

	Service Model
	Web Coverage Service

	Web Map Service

	Web Processing Service

Introduction

What is EOxServer?

EOxServer is an open source software for registering, processing, and publishing
Earth Observation (EO) data via different Web Services. EOxServer is written in
Python and relies on widely-used libraries for geospatial data manipulation.

The core concept of the EOxServer data model is the one of a coverage. In this
context, a coverage is a mapping from a domain set (a geographic region of the
Earth described by its coordinates) to a range set. For original EO data,
the range set usually consists of measurements of some physical quantity
(e.g. radiation for optical instruments).

The EOxServer service model is designed to deliver (representations of) EO data
using open standard web service interfaces as specified by the Open Geospatial
Consortium [http://www.opengeospatial.org] (OGC).

What are the main features of EOxServer?

	Repository for Earth Observation data

	OGC Web Services

	Administration Tools

	Web Client

	Identity Management System

Where can I get it?

You can get the EOxServer source from

	the EOxServer Download page [http://eoxserver.org/wiki/Download]

	the Python Package Index (PyPi) [http://pypi.python.org/pypi/EOxServer/]

	the EOxServer Git repository [https://github.com/EOxServer/eoxserver]

Additionally the following binary packages are provided:

	Enterprise Linux RPMs from EOX’ YUM repository [http://packages.eox.at]

The recommended way to install EOxServer on your system is to use the
Python installer utility
pip [http://www.pip-installer.org/en/latest/index.html].

Please refer to the Installation document for further information on
installing the software.

Where can I get support?

If you have questions or problems, you can get support at the official
EOxServer Users’ mailing list users@eoxserver.org. See Mailing Lists for
instructions how to subscribe.

Documentation is available on this site and as a part of the EOxServer source.

EOxServer Documentation

The EOxServer documentation consists of the

	Users’ Guide (which this document is part of)

	Developers’ Guide (where you can find implementation details)

	Requests for Comments (where you can find high-level design documentation)

Furthermore, you can consult the inline documentation in the source code
e.g. in the Source Browser [https://github.com/EOxServer/eoxserver].

Demonstration Services

There is a demonstration service available on the EOxServer site. You can reach
it under http://eoxserver.org/demo_stable/ows. For some sample calls to
different OGC Web Services, see Demonstration.

Data Model

The EOxServer data model describes which data can be handled by the software
and how this is done. This section gives you a short overview about the
basic components of the data model.

The term coverage is introduced by the OGC Abstract Specification. There,
coverages are defined as a mapping between a domain set that can be referenced
to some region of the Earth to a range set which describes the possible values
of the coverage. This is, of course, a very abstract definition. It comprises
everything that has historically been called “raster data” (and then some, but
that is out of scope of EOxServer at the moment).

The data EOxServer originally was designed for is satellite imagery. So the
domain set is the extent of the area that was scanned by the respective sensor,
and the range set contains its measurements, e.g. the radiation of a spectrum of
wavelengths (optical data).

In the language of the OGC Abstract Specification ortho-rectified data
corresponds to “rectified grid coverages”, whereas data in
the original geometry corresponds to “referenceable grid coverages”.

The EOxServer coverage model relies heavily on the data model of the
Web Coverage Service 2.0 Earth Observation Application Profile which is about
to be approved by OGC. This profile introduces different categories of
Earth Observation data:

	Rectified or Referenceable Datasets roughly correspond to satellite scenes,
either ortho-rectified or in the original geometry

	Rectified Stitched Mosaics are collections of Rectified Datasets that can be
combined to form a single coverage

	Dataset Series are more general collections of Datasets; they are just
containers for coverages, but not coverages themselves

Datasets, Stitched Mosaics and Dataset Series are accompanyed by Earth
Observation metadata. At the moment, EOxServer supports a limited subset of
metadata items, such as the identifier of the Earth Observation product, the
acquisition time and the acquisistion footprint.

Service Model

Earth Observation data are published by EOxServer using different OGC Web
Services. The OGC specifies open standard interfaces for the exchange of
geospatial data that shall ensure interoperability and universal access to
geodata.

Web Coverage Service

The OGC Web Coverage Service [http://www.opengeospatial.org/standards/wcs]
(WCS) is designed to deliver original coverage data. EOxServer implements
three versions of the WCS specification:

	version 1.0.0

	version 1.1.0

	version 2.0.1 including the Earth Observation Application Profile (EO-WCS)

Each of these versions supports three operations:

	GetCapabilities - returns an XML document describing the available coverages
(and Dataset Series)

	DescribeCoverage - returns an XML document describing a specific coverage
and its metadata

	GetCoverage - returns (a subset of) the coverage data

The WCS 2.0 EO-AP (EO-WCS) adds an additional operation:

	DescribeEOCoverageSet - returns an XML document describing (a subset of) the
datasets contained in a Rectified Stitched Mosaic or Dataset Series

For detailed lists of supported parameters for each of the operations see
EO-WCS Request Parameters .

In addition, EOxServer supports the WCS 1.1 Transaction operation which provides
an interface to ingest coverages and metadata into an existing server.

Web Map Service

The OGC Web Map Service [http://www.opengeospatial.org/standards/wms] (WMS)
is intended to provide portrayals of geospatial data (maps). In EOxServer,
WMS is used for viewing purposes. The service provides RGB or grayscale
representations of Earth Observation data. In some cases, the Earth Observation
data will be RGB imagery itself, but in most cases the bands of the images
correspond to other parts of the wavelength spectrum or other measurements
altogether.

EOxServer implements WMS versions 1.0, 1.1 and 1.3 as well as parts of the
Earth Observation Application Profile for WMS 1.3. The basic operations are:

	GetCapabilities - returns an XML document describing the available layers

	GetMap - returns a map

For certain WMS 1.3 layers, there is also a third operation available

	GetFeatureInfo - returns information about geospatial features (in our case:
datasets) at a certain position on the map

Every coverage (Rectified Dataset, Referenceable Dataset or Rectified Stitched
Mosaic) is mapped to a WMS layer. Furthermore, Dataset Series are mapped to
WMS layers as well. In WMS 1.3 a “bands” layer is appended for each coverage
that allows to select and view a subset of the coverage bands only. Furthermore,
queryable “outlines” layers are added for Rectified Stitched Mosaics and Dataset
Series which show the footprints of the Datasets they contain.

Web Processing Service

The OGC Web Processing Service [http://www.opengeospatial.org/standards/wps]
(WPS) is intended to make processing resources for geospatial data available
online. EOxServer features an implementation of this standard as well.

The WPS server provides three operations:

	GetCapabilities - returns an XML document describing the available processes

	DescribeProcess - returns an XML document describing a specific process

	Execute - allows to invoke a process

Global Use Case

Table of Contents

	Global Use Case
	The General Provider View
	Environment & Software Configuration

	Data Registration

	The General User View
	Web Browser

	GIS Tool

This section describes the global Use Case of EOxServer including concrete
usage scenarios as examples.

Figure: “Parties involved in the EOxServer Global Use Case” introduces the involved parties in this
global Use Case.

[image: ../_images/Global_Use_Case1.png]
Parties involved in the EOxServer Global Use Case

On the one side there is a provider of Earth Observation (EO) data. The
provider has a possibly huge, in terms of storage size, archive of EO data and
wants to provide this data to users. Of course the data provision has to follow
certain constraints and requirements like technical, managerial, or security
frame conditions but in general the provider wants to reach as many users as
possible with minimal efforts.

On the other side there is a user of EO data. The user has the need of certain
EO data as input to some processing which varies from simple viewing to complex
data analysis and generation of derived data. The user wants to obtain the
needed EO data as easily as possible which includes finding the right data from
the right provider at the right time at the right location and retrieving it in
the right representation e.g. format.

Already from this simple constellation the need for standardized interfaces is
evident. Thus EOxServer implements the open publicly available interface
standards defined by the Open Geospatial Consortium (OGC). In particular
EOxServer contains an implementation of the Web Coverage Service (WCS)
including its Earth Observation Application Profile (EO-WCS) and the Web Map
Service (WMS) again including its EO extension (EO-WMS).

These interface standards have been chosen to support the new paradigm of
“zooming to the data”. This means looking at previews of the data rather than
searching in a catalogue in order to find the right data. WMS together with its
EO extension is used for the previews whereas WCS with its EO extensions is
used to download the previously viewed data and metadata. Of course a provider
is free to operate a catalogue in parallel including references to the EO-WMS
and EO-WCS.

The EOxServer software stack is a collection of Open Source Software designed
to enhance a wide range of legacy systems of EO data archives with controlled
Web-based access (“online data access”) with minimal efforts for the provider.
The user not only significantly benefits from the provider’s enhanced online
data access but also from the client functionalities included in the EOxServer
software stack.

In particular the EOxServer software stack provides the following features:

	easy to install

	simple yet powerful web interface for data registration for the provider

	standardized way to access geographic data i.e. via EO-WMS and EO-WCS

	download of subsets of data

	on the fly re-projection, re-sampling, and format conversion

	visual preview of data

	integrated usage of EO-WMS and EO-WCS to view and download the same data

	intelligent automated handling of EO collections and mosaics

	homogeneous way to access different data, metadata, and packaging formats

	homogeneous access to different storage systems i.e. file system, ftp, and
rasdaman

These features result in the general benefit for the provider to be more
attractive to the user.

The following sub-sections provide details from the provider and user point of
view highlighting the possible usage of the EOxServer software stack.

The General Provider View

The provider operates an archive of EO data with different ways of actually
accessing the data. For simplicity let’s assume the data archived in this
legacy system can be accessed in two ways. First there is the local access
directly to the file system via operating system capabilities. Second there is
an online access by exposing certain directories via FTP.

The EOxServer software stack acts as a middle-ware layer in front of the legacy
archive system that expands the offered functionality and thus widens the
potential user or customer base. The additional functionality compared to plain
FTP access includes:

	interoperable online access via a standard interface defined by an accepted
international industry consortium

	domain and range sub-setting of coverages allowing to download only the
needed parts of a coverage and thus saving bandwidth

	spatial-temporal search within the offered coverages

	on-the-fly mosaicking

	on-the-fly re-projection

	delivery in multiple encoding formats i.e. on-the-fly format conversion

	on-the-fly scaling and re-sampling

	preview via EO-WMS

	embedding of metadata (EO-O&M) adjusted to the actual delivered coverage

Figure: “Provider View” provides an overview of the
provider environment showing the provider’s legacy system and the extending
EOxServer software stack.

[image: ../_images/Global_Use_Case_Provider.png]
Provider View

The recommended way for the installation of the EOxServer software stack is to
use a host which has direct read access to the data via the file system using
operating system capabilities. If this file system is physically located on the
same hardware host or if it is mounted from some remote storage e.g. via NFS or
Samba doesn’t matter in terms of functionality. However, in terms of
performance the actual configuration has some impact as big data might have to
be transferred over the network with different bandwidths.

The other option is to use the read access via FTP which is a practical
configuration in terms of functionality. However, in terms of performance this
isn’t the recommended configuration because of the need to always transfer
whole files even if only a subset is needed. Various caching strategies will
significantly improve this configuration, though.

After the installation of all software components needed for the EOxServer
software stack there are two main activities left for the provider:

	Configure the environment (e.g. register service endpoint(s) in a web server)
and EOxServer (e.g. enable or disable components like services)

	Register data

Figure: “Activities to Enhance the Provider’s Environment” shows these activities
needed to enhance the provider’s environment with online data access to the EO
data archive legacy system.

[image: ../_images/Global_Use_Case_Provider_Activity.png]
Activities to Enhance the Provider’s Environment

Environment & Software Configuration

The EOxServer software stack consists of the EOxServer, the Identity
Management, and the Applications Interface software components.

The Identity Management layer is an optional layer on top of EOxServer. Thus
and because its configuration is extensively discussed in section
Identity Management System we skip it here.

The Applications Interface software components are discussed in detail in
section The General User View below.

As EOxServer is based on Python, MapServer, GDAL/OGR, and Django these software
components need to be installed first. The base configuration of EOxServer
consists of the generation of an EOxServer instance and registering it in a web
server.

The EOxServer instance generation includes the configuration of various
parameters like database name, type, and connection info, instance id, paths to
logfiles, temporary directories, etc. as well as the initialization of its
database. There are two options for the database management system (DBMS). The
first is SQLite together with SpatialLite which is a single file DBMS and thus
best suited for testing purposes. The second is PostgreSQL together with
PostGIS which is a full fledged DBMS with numerous management functionalities
and thus best suited for operational environments.

The database itself holds the configuration of components and resources (e.g.
is WCS 1.0.0 enabled) as well as the coverage metadata ingested during
registration (see section Data Registration).

EOxServer can be operated with any web server that supports the Python WSGI
standards [https://docs.djangoproject.com/en/1.4/howto/deployment/]. For
testing and implementation purposes the Django framework directly provides a
simple web server. However, in operational environments the recommended
deployment of EOxServer is to use the well-known Apache web server [http://httpd.apache.org] together with mod_wsgi [http://code.google.com/p/modwsgi/]. In most cases it will be the easiest,
fastest, and most stable deployment choice.

At this point the provider’s administrator or operator can actually run the
software stack and configure the remainder via EOxServer’s admin app. This app
is accessed via a standard web browser and, when using Django’s internal web
server, available at the URL: “http://localhost:8000/admin”. Use the user
credentials that have been set in the database initialization step.

Figure: “Admin app - Start” shows the admin app after successful
login. On the left side the four modules “Auth”, “Backends”, “Core”, and
“Coverages” are shown. “Auth” is the internal Django user management module
which is at the moment only used for the admin app itself. “Backends” and
“Coverages” are the modules for data registration which is described in section
Data Registration below.

The “Core” module is used to enable or disable EOxServer components like
services. The provider can decide which services and even which versions of
which services EOxServer shall expose. A possible configuration is to expose
WCS 2.0 and WMS 1.3.0 which are the latest versions but not any older version.
In the default database initialization all services are enabled.

[image: ../_images/Admin_app_Start.png]
Admin app - Start

Data Registration

The data registration is done via the functionalities provided by the
“Backends” and “Coverages” modules of the admin app. Figure:
“Admin app - Start” shows for which data types, or models in Django
terminology, instances can be added or changed in these modules. These data
types correspond to tables in the database. Only a subset of the full data
model (see Figure: “EOxServer Data Model for Coverage Resources)” is shown in the admin app
because some are filled automatically upon saving and some are included in the
available ones like TileIndex in Stitched Mosaics.

The Dataset Series provides a convenient way to register a complete dataset
series or collection at once. Figure:
“Admin app - Add/Change Dataset Series” shows the admin app when changing
a Dataset Series instance. The operator has to provide an “EO ID” and an “EO
Metadata Entry”. All other parameters are optional as can be seen by the usage
of normal instead of bold face text. However, in order to actually register
coverages either one or multiple “Data sources”, consisting of a “Location”
e.g. a data directory and a “Search pattern”, have to be added. Alternatively,
the administrator can decide to register single coverages and link them to the
Dataset Series via the “Advanced coverage handling” module (see Figure:
“Admin app - Add/Change Dataset Series Advanced”).

[image: ../_images/Admin_app_Change_Dataset_Series.png]
Admin app - Add/Change Dataset Series

Figure: “Admin app - Add/Change EO Meatadata” shows the screen for adding
or changing an EO metadata entry. The operator has to provide the “Begin of
acquisition”, “End of acquisition”, and “Footprint” of the overall Dataset
Series in the same way as for any EO Coverage. Calendar, clock, and map widgets
are provided to ease the provision of these parameters. Optionally a full EO
O&M metadata record can be supplied.

[image: ../_images/Admin_app_Change_EO_Meatadata.png]
Admin app - Add/Change EO Meatadata

Saving a Dataset Series triggers a synchronization process. This process scans
the Locations, e.g. directories and included sub-directories, of all configured
Data Sources for files that follow the configured search pattern e.g. “*.tif”.
All files found are evaluated using GDAL and for any valid and readable raster
file a Dataset instance is generated in the database holding all metadata
including EO metadata for the raster file. Of course the raster file itself
remains unchanged in the file system.

Let’s look in more detail at the synchronization process and assume a plain
GeoTIFF file with name “demo.tif” was found. The synchronization process
extracts the necessary geographic metadata i.e. the domainSet or extent
consisting of CRS, size, and bounding box directly from the GeoTIFF file. Where
does the metadata come from? In order to retrieve the EO metadata at the moment
the process looks for a file called “demo.xml” accompanying the GeoTIFF file.
In future this may be expanded to automatically retrieve the metadata from
catalogues like the ones the EOLI-SA connects to but for the moment the files
have to be generated before the registration. The content of this file can
either be a complete EO-O&M metadata record or a simple native metadata record
containing only the mandatory parameters which are: “EOID”, “Begin of
acquisition”, “End of acquisition”, and “Footprint”. If no “demo.xml” is found
the process uses default values which are: file name without extension, current
date and time, and full bounding box of raster file. Of course, the
synchronization process can be re-run at any time e.g. from a daily, hourly,
etc. cronjob.

This configuration is sufficient to bring online a complete EO data archive
accessible via the file system.

A comparable synchronization process is available for FTP and rasdaman
back-ends as well as for Stitched Mosaics. However, mostly these processes
require more complex synchronization steps. For example, via the FTP back-end
it is better to not inspect the raster files itself which would mean to
completely transfer them but to retrieve the geographic information together
with the EO metadata. Please refer to the remainder of this Users’ Guide for detailed information and usage instructions.

[image: ../_images/Admin_app_Change_Dataset_Series_Advanced.png]
Admin app - Add/Change Dataset Series Advanced

The General User View

The user needs certain EO data as input to some processing. This processing
ranges from simply viewing certain parameters of EO data to complex data
analysis and generation of derived data. The user has an environment with the
software installed needed for the processing. For simplicity let’s assume the
user has two different software tools installed to process the data. First
there is a standard web browser which manages the HTTP protocol and is capable
of viewing HTML web pages. Second there is a GIS software which shall be QGis
in our example.

Figure: “User View” shows the user environment and its
installed software.

[image: ../_images/Global_Use_Case_User.png]
User View

First of all the user needs to find an EO data provider who has data that fit
the user’s purpose and who offers the data via a mechanism the user can handle.
Luckily the user happens to know a provider who is running the EOxServer
software stack on an EO data archive holding the required data. Thus the user
can decide between several ways how to retrieve the data. Some involve client
side components of the EOxServer software stack but because of the strict
adherence to open standards various other ways are possible in parallel.
However, we’ll focus below on two ways involving EOxServer software components.

Web Browser

In the first case the provider offers a dedicated app using EOxServer’s Web
API. This app consists of HTML and Javascript files and is served via a web
server from the provider’s environment. In our case the app provides access to
one dataset series holding some MERIS scenes over Europe.

Figure: “Browser app featuring EOxServer’s Web API” shows a screen shot of this app. The app
implements the paradigm of “zooming to the data” i.e. the user directly looks
at previews of the data served via EO-WMS rather than having to search in a
catalogue first. After zooming to and therewith setting the Area of Interest
(AoI) and setting the Time of Interest (ToI) the user following the download
button is presented with the metadata of the included datasets retrieved from
the offered EO-WCS. The metadata includes grid, bands, CRS, nil values, etc. of
the datasets but also formats, CRSs, and interpolation methods the dataset can
be retrieved in. Based on this information the user decides which datasets to
download and specifies parameters of the download like spatial sub-setting,
band sub-setting, CRS, size/resolution, interpolation method, format, and
format specific parameters like compression. The app guides the user to specify
all these parameters and downloads only the really needed data to the user’s
environment. The EO-WCS protocol is used by the app transparently to the user
i.e. most of the complexity of the EO-WCS protocol is hidden.

This app shows the benefit of the integrated usage of EO-WMS and EO-WCS for the
online data access to the EO data archive.

[image: ../_images/webclient_autotest.png]
Browser app featuring EOxServer’s Web API

The Webclient Interface section of the documentation provides more
details about the Web API.

GIS Tool

Note, that the Python Client API is not yet implemented and only available as
concept.

In the second case the user wants to use the full-fledged GIS software tool
QGis and thus decides to use the handy EO-WCS plug-in provided by the provider.
This plug-in makes extensive use of EOxServer’s Python Client API.

Figure: “QGis EO-WCS Plug-in featuring EOxServer’s Python Client API” shows a screen shot how the usage of the
EO-WCS plug-in for QGis might look like. The user first has to connect to the
provider’s EO-WCS endpoint. Once connected the plug-in retrieves the metadata
about the available dataset series and shows them as a list to the user
together with the tools to specify AoI and ToI. Metadata of datasets and
stitched mosaics might also be retrieved in this step if the provider
configured some to be directly visible in the capabilities of the EO-WCS.

The selected dataset series are transparently searched within the set
spatio-temporal bounding box and available datasets and stitched mosaics
presented to the user. After exploring and setting the download parameters
like in the first case the EO-WCS plug-in downloads again only the required
data sub-sets. In addition to the previous case the EO-WCS plug-in applies
various strategies to limit the data download. For example if a dataset is
added to the current list of layers only the currently viewed area needs to be
filled with data at the resolution of the screen. In addition the data can be
sub-setted to one or three bands that are shown i.e. there’s no need to
download numerous float32 bands just to preview the data.

With using the EOxServer software stack on the provider side the plug-in
includes the possibility to exploit the integrated usage of EO-WMS and EO-WCS.
This exploitation includes the displaying of previews in the two steps
described above. Another feature is, that the possibly nicer looking images are
retrieved from the performance optimized EO-WMS to fill the current view.

Once the user starts some sophisticated processing the plug-in retrieves the
required sub-sets of the original data. Again strategies to limit the data
download are applied.

[image: ../_images/Client_QGis_Add_WCS.png]
QGis EO-WCS Plug-in featuring EOxServer’s Python Client API

Installation

Table of Contents

	Installation
	Dependencies

	Installing EOxServer

	Upgrading EOxServer

	Hardware Guidelines

To use EOxServer it must be installed first. Following this guide will
give you a working software installation.

See also

	
	Installation on CentOS

	for specific installation on CentOS.

	
	Service Instance Creation and Configuration

	to configure an instance of EOxServer after successful installation.

	
	Recommendations for Operational Installation

	to configure an operational EOxServer installation.

Dependencies

EOxServer depends on some external software. Table:
“EOxServer Dependencies” below shows the minimal required software
to run EOxServer.

EOxServer Dependencies

	Software
	Required Version
	Description

	Python
	>= 2.5, < 3.0
(>=2.6.5 for
Django 1.5)
	Scripting language

	Django
	>= 1.4 (1.5 for
PostGIS 2.0
support)
	Web development framework written in
Python including the GeoDjango extension
for geospatial database back-ends.

	GDAL
	>= 1.7.0 (1.8.0
for rasdaman
support)
	Geospatial Data Abstraction Library
providing common interfaces for accessing
various kinds of raster and vector data
formats and including a Python binding
which is used by EOxServer

	GEOS
	>= 3.0
	GEOS (Geometry Engine - Open Source) is a
C++ port of the Java Topology Suite (JTS).

	libxml2
	>= 2.7
	Libxml2 is the XML C parser and toolkit
developed for the Gnome project.

	lxml
	>= 2.2
	The lxml XML toolkit is a Pythonic binding
for the C libraries libxml2 and libxslt.

	MapServer
	>= 6.2
(works partly
with 6.0)
	Server software implementing various OGC
Web Service interfaces including WCS and
WMS. Includes a Python binding which is
used by EOxServer.

The Python bindings of the GDAL, MapServer (MapScript) and libxml2 libraries are
required as well.

EOxServer is written in Python [http://www.python.org/] and uses the
Django [https://www.djangoproject.com] framework which requires a
Python version from 2.5 to 2.7. Due to backwards incompatibilities in Python
3.0, Django and thus EOxServer does not currently work with Python 3.0.

EOxServer makes heavy usage of the OSGeo [http://osgeo.org] projects
GDAL [http://www.gdal.org] and MapServer [http://mapserver.org].

EOxServer also requires a database to store its internal data objects. Since it
is built on Django, EOxServer is mostly database agnostic, which means you can
choose from various database systems. Since EOxServer requires the database to
have geospatial enablement, the according extensions to that database have to
be installed. We suggest you use one of the following:

	For testing environments or small amounts of data, the SQLite [http://sqlite.org/] database provides a lightweight and easy-to-use
system.

	However, if you’d like to work with a “large” database engine in an
operational environment we recommend installing PostgreSQL [http://www.postgresql.org/].

For more and detailed information about database backends please refer to
Django database notes [https://docs.djangoproject.com/en/1.4/ref/databases/]
and GeoDjango installation [https://docs.djangoproject.com/en/1.4/ref/contrib/gis/install/].

Database Dependencies

	Backend
	Required Version
	Required extensions/software

	SQLite
	>= 3.6
	spatialite (>= 2.3), pysqlite2 (>= 2.5),
GEOS (>= 3.0), PROJ.4 (>= 4.4)

	PostgreSQL
	>= 8.1
	PostGIS (>= 1.3), GEOS (>= 3.0),
PROJ.4 (>= 4.4), psycopg2 (== 2.4.1)

Installing EOxServer

There are several easy options to install EOxServer:

	Install an official release of EOxServer, the best approach for users who
want a stable version and aren’t concerned about running a slightly older
version of EOxServer. You can install EOxServer either from

	PyPI - the Python Package Index [http://pypi.python.org/pypi] using
pip [http://www.pip-installer.org/en/latest/index.html]:

sudo pip install eoxserver

	or from the EOxServer release page [https://github.com/EOxServer/eoxserver/releases]
using pip:

sudo pip install https://github.com/EOxServer/eoxserver/releases/download/release-<version>/EOxServer-<version>.tar.gz

or manually:

wget https://github.com/EOxServer/eoxserver/releases/download/release-<version>/EOxServer-<version>.tar.gz .
tar xvfz EOxServer-<version>.tar.gz
cd EOxServer-<version>
sudo python setup.py install

	or binaries provided by your operating system distribution e.g.
CentOS.

	Install the latest development version, the best option for users who
want the latest-and-greatest features and aren’t afraid of running
brand-new code. Make sure you have git [http://git-scm.com/] installed and install EOxServer’s
main development branch using pip:

sudo pip install git+https://github.com/EOxServer/eoxserver.git

or manually:

mkdir eoxserver_git
git clone git@github.com:EOxServer/eoxserver.git eoxserver_git
cd eoxserver_git
sudo python setup.py install

If the directory EOxServer is installed to is not on the Python path, you will
have to configure the deployed instances accordingly, see
Deployment below.

The successful installation of EOxServer can be tested using the
autotest instance which is described in more detail in the
Developers’ Guide.

Now that EOxServer is properly installed the next step is to create and
configure a service instance.

Upgrading EOxServer

To upgrade an existing installation of EOxServer simply add the –upgrade
switch to your pip command e.g.:

sudo pip install --upgrade eoxserver

or rerun the manual installation as explained above.

Please carefully follow the migration/update procedure
corresponding to your version numbers for any configured EOxServer instances
in case of a major version upgrade.

Hardware Guidelines

EOxServer has been deployed on a variety of different computers and virtual
machines with commonplace hardware configurations. The typical setup is:

	a dual-core or quad-core CPU

	1 to 4 GB of RAM

The image processing operations required for certain OGC Web Service requests
(subsetting, reprojection, resampling) may be quite expensive in terms of
CPU load and memory consumption, so adding more RAM or an additional core (for
VMs) may increase the performance of the service. Bear in mind however, that
disk I/O speed is often a bottleneck.

Installation on CentOS

Table of Contents

	Installation on CentOS
	Prerequisites

	Installation from RPM Packages
	Preparation of RPM Repositories

	Installing EOxServer

	Alternate installation method using pip
	Required Software Packages

	Installing EOxServer

	Special pysqlite considerations

This section describes specific installation procedure for EOxServer
on CentOS [http://www.centos.org/] GNU/Linux based operating systems.
In this example, a raw CentOS 6.4 minimal image is used.

This guide is assumed (but not tested) to be applicable also for equivalent
versions of the prominent North American Enterprise Linux and its clones.

See also

	
	Installation

	generic installation procedure for GNU/Linux operating systems.

	
	Service Instance Creation and Configuration

	to configure an instance of EOxServer after successful installation.

	
	Recommendations for Operational Installation

	to configure an operational EOxServer installation.

Prerequisites

This example requires a running CentOS installation with superuser privileges
available.

Installation from RPM Packages

Preparation of RPM Repositories

The default repositories of CentOS do not provide all software packages
required for EOxServer, and some packages are only provided in out-dated
versions. Thus several further repositories have to be added to the system’s
list.

The first one is the ELGIS (Enterprise Linux GIS) [http://wiki.osgeo.org/wiki/Enterprise_Linux_GIS] repository which can be
added with the following yum command:

sudo rpm -Uvh http://elgis.argeo.org/repos/6/elgis-release-6-6_0.noarch.rpm

The second repository to be added is EPEL (Extra Packages for Enterprise
Linux) [http://fedoraproject.org/wiki/EPEL] again via a simple yum command:

sudo yum install epel-release

Finally EOxServer is available from the yum repository at packages.eox.at [http://packages.eox.at]. This repository offers current versions of
packages like MapServer [http://mapserver.org/] as well as custom built
ones with extra drivers enabled like GDAL [http://gdal.org/] and/or with
patches applied like libxml2 [http://xmlsoft.org/]. It is not mandatory
to use this repository as detailed below but it is highly recommended in
order for all features of EOxServer to work correctly. The repository is
again easily added via a single yum command:

sudo rpm -Uvh http://yum.packages.eox.at/el/eox-release-6-2.noarch.rpm

Installing EOxServer

Once the RPM repositories are configured EOxServer and all its dependencies
are installed via a single command:

sudo yum install EOxServer

To update EOxServer simply run the above command again or update the whole
system with:

sudo yum update

Please carefully follow the migration/update procedure
corresponding to your version numbers for any configured EOxServer instances
in case of a major version upgrade.

Further packages may be required if additional features (e.g: a full DBMS)
are desired. The following command for example installs all packages needed
when using SQLite:

sudo yum install sqlite libspatialite python-pysqlite python-pyspatialite

Alternatively the PosgreSQL DBMS can be installed as follows:

sudo yum install postgresql postgresql-server postgis python-psycopg2

To run EOxServer behind the Apache web server requires the installation of this
web server:

sudo yum install httpd mod_wsgi

Now that EOxServer is properly installed the next step is to create and
configure a service instance.

Alternate installation method using pip

Required Software Packages

The installation via pip builds EOxServer from its source. Thus there are
some additional packages required which can be installed using:

sudo yum install gdal gdal-python gdal-devel mapserver mapserver-python \
 libxml2 libxml2-python python-lxml python-pip \
 python-devel gcc

Installing EOxServer

For the installation of Python packages pip [http://www.pip-installer.org/]
is used, which itself was installed in the previous step. It automatically
resolves and installs all dependencies. So a simple:

sudo pip-python install eoxserver

suffices to install EOxServer itself.

To upgrade an existing installation of EOxServer simply add the --upgrade
switch to your pip command:

sudo pip-python install --upgrade eoxserver

Please don’t forget to follow the update procedure for any configured
EOxServer instances in case of a major version upgrade.

Now that EOxServer is properly installed the next step is to create and
configure a service instance.

Special pysqlite considerations

When used with spatialite [http://www.gaia-gis.it/spatialite/] EOxServer
also requires pysqlite [http://code.google.com/p/pysqlite/] and
pyspatialite which can be either installed as RPMs from packages.eox.at [http://packages.eox.at] (see Installing EOxServer
above) or from source.

If installing from source please make sure to adjust the
SQLITE_OMIT_LOAD_EXTENSION parameter in setup.cfg which is set by
default but not allowed for EOxServer. The following provides a complete
installation procedure:

sudo yum install libspatialite-devel geos-devel proj-devel
sudo pip-python install pyspatialite
wget https://pysqlite.googlecode.com/files/pysqlite-2.6.3.tar.gz
tar xzf pysqlite-2.6.3.tar.gz
cd pysqlite-2.6.3
sed -e '/^define=SQLITE_OMIT_LOAD_EXTENSION$/d' -i setup.cfg
sudo python setup.py install

If the installation is rerun the --upgrade respectively the --force
flag have to be added to the pip-python and python commands in order
to actually redo the installation:

sudo pip-python install --upgrade pyspatialite
sudo python setup.py install --force

Service Instance Creation and Configuration

Table of Contents

	Service Instance Creation and Configuration
	Instance Creation

	Instance Configuration

	Database Setup

	Deployment

	Data Registration

Speaking of EOxServer we distinguish the common EOxServer installation (the
installed code implementing the software functionality) and EOxServer
instances. An instance is a collection of data and configuration files that
enables the deployment of a specific service. A single server will typically
contain a single software installation and one or more specific instances.

This section deals with the creation and configuration of EOxServer instances.

See also

	
	Installation

	generic installation procedure for GNU/Linux operating systems.

	
	Installation on CentOS

	for specific installation on CentOS.

	
	Recommendations for Operational Installation

	to configure an operational EOxServer installation.

Instance Creation

To create an instance, we recommend to use the eoxserver-instance.py
script that comes with EOxServer:

Usage: eoxserver-instance.py [options] INSTANCE_ID [Optional destination directory]

Creates a new EOxServer instance with name INSTANCE_ID in the current
or optionally given directory with all necessary files and folder
structure. If the --init-spatialite flag is set, then an initial
sqlite database will be created and initialized.

Options:

	
-h, --help
	show this help message and exit

	
--init-spatialite

	 	Flag to initialize the sqlite database.

Instance Configuration

Every EOxServer instance has various configuration files:

	settings.py - template [https://github.com/EOxServer/eoxserver/blob/0.4/eoxserver/instance_template/project_name/settings.py]

	urls.py` - template [https://github.com/EOxServer/eoxserver/blob/0.4/eoxserver/instance_template/project_name/urls.py]

	conf/eoxserver.conf - template [https://github.com/EOxServer/eoxserver/blob/0.4/eoxserver/instance_template/project_name/conf/eoxserver.conf]

For each of them there is a template in the eoxserver/instance_template
directory of the EOxServer distribution (referenced above) which is copied and
adjusted by the eoxserver-instance.py script to the instance directory.
If you create an EOxServer instance without the script you can copy those files
and edit them yourself.

The file settings.py contains the Django configuration. Settings that need
to be customized:

	PROJECT_DIR: Absolute path to the instance directory.

	DATABASES: The database connection details. For detailed information see
Database Setup

	COMPONENTS: The EOxServer components enabled for this instance. This is
the main way how the active functionality of EOxServer is controlled, and also
a way to extend the existing capabilities with extensions. Please refer to the
Plugins section to see how this is done. By default all available components
are enabled.

	LOGGING: what and how logs are prcessed and stored. EOxServer provides a
very basic configuration that stores logfiles in the instace directory, but
they will probably not be suitable for every instance.

You can also customize further settings, for a complete reference please refer
to the Django settings overview [https://docs.djangoproject.com/en/1.4/topics/settings/].

Please especially consider the setting of the TIME_ZONE [https://docs.djangoproject.com/en/1.4/ref/settings/#std:setting-TIME_ZONE]
parameter and read the Notes provided in the settings.py file.

The file conf/eoxserver.conf contains EOxServer specific settings. Please
refer to the configuration options section for details.

Once you have created an instance, you have to configure and synchronize the
database. If you are using the eoxserver-instance.py script with the
--init-spatialite flag, all you have to do is:

	Make sure EOxServer is on your PYTHONPATH environment variable

	run in your instance directory:

python manage.py syncdb

This script will also create an administration user if you want to. Note the
username and password you provide. You’ll need it to log in to the admin client.

You can always create a user at a later time by running
python manage.py createsuperuser.

Database Setup

This section is only needed if the --init_spatialite flag was not used
during instance creation or a PostgreSQL/PostGIS database back-end shall be
used. Before proceeding, please make sure that you have installed all required
software for the database system of your choice.

Using a SQLite database, all you have to do is to copy the
TEMPLATE_config.sqlite and place it somewhere in your instance directory.
Now you have to edit the DATABASES of your settings.py file with the
following lines:

DATABASES = {
 'default': {
 'ENGINE': 'django.contrib.gis.db.backends.spatialite',
 'NAME': '/path/to/config.sqlite',
 }
}

Using a PostgreSQL/PostGIS database back-end configuration for EOxServer is a
little bit more complex. Setting up a PostgreSQL database requires also
installing the PostGIS extensions (the following example is an installation
based on a Debian system):

sudo su - postgres
POSTGIS_DB_NAME=eoxserver_db
POSTGIS_SQL_PATH=`pg_config --sharedir`/contrib/postgis-1.5
createdb $POSTGIS_DB_NAME
createlang plpgsql $POSTGIS_DB_NAME
psql -d $POSTGIS_DB_NAME -f $POSTGIS_SQL_PATH/postgis.sql
psql -d $POSTGIS_DB_NAME -f $POSTGIS_SQL_PATH/spatial_ref_sys.sql
psql -d $POSTGIS_DB_NAME -c "GRANT ALL ON geometry_columns TO PUBLIC;"
psql -d $POSTGIS_DB_NAME -c "GRANT ALL ON geography_columns TO PUBLIC;"
psql -d $POSTGIS_DB_NAME -c "GRANT ALL ON spatial_ref_sys TO PUBLIC;"

This creates the database and installs the PostGIS extensions within the
database. Now a user with password can be set with the following line:

createuser -d -R -P -S eoxserver-admin

Depending on the configuration of the system used there may be the need to
enable access for the user in the pg_hba.conf.

In the settings.py the following entry has to be added:

DATABASES = {
 'default': {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'eoxserver_db',
 'USER': 'eoxserver-admin',
 'PASSWORD': 'eoxserver',
 'HOST': 'localhost', # or the URL of your server hosting the DB
 'PORT': '',
 }
}

Please refer to GeoDjango Database API [https://docs.djangoproject.com/en/1.4/ref/contrib/gis/db-api/] for more
instructions.

Deployment

EOxServer is deployed using the Python WSGI interface standard as any other
Django application [https://docs.djangoproject.com/en/1.4/howto/deployment/].
The WSGI endpoint accepts HTTP requests passed from the web server and
processes them synchronously. Each request is executed independently.

In the deployment git repository [https://github.com/EOxServer/deployment]
we collect snippets for various deployment scenarios.

In the following we present the way to deploy it using the Apache2 Web Server [http://httpd.apache.org] and its mod_wsgi [http://code.google.com/p/modwsgi/] extension module.

The deployment procedure consists of the following:

	Customize the Apache2 configuration file, e.g.
/etc/apache2/sites-enabled/000-default, by adding:

Alias /<url> <absolute path to instance dir>/wsgi.py
<Directory "<absolute path to instance dir>">
 AllowOverride None
 Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch
 AddHandler wsgi-script .py
 Order Allow,Deny
 Allow from all
</Directory>

	If using EOxServer < 0.3 customize wsgi.py in your EOxServer instance
and add:

import sys

path = "<absolute path to instance dir>"
if path not in sys.path:
 sys.path.append(path)

	Restart the Web Server

As a general good idea the number of threads can be limited using the
following additional Apache2 configuration. In case an old version of
MapServer, i.e. < 6.2 or < 6.0.4, is used the number of threads needs to be
limited to 1 to avoid some thread safety issues [https://github.com/mapserver/mapserver/issues/4369]:

WSGIDaemonProcess ows processes=10 threads=1
<Directory "<absolute path to instance dir>">
 ...
 WSGIProcessGroup ows
</Directory>

This setup will deploy your instance under the URL <url> and make it
publicly accessible.

Finally all the static files need to be collected at the location configured
by STATIC_ROOT in settings.py by using the following command from
within your instance:

python manage.py collectstatic

Don’t forget to update the static files by re-running above command if needed.

Data Registration

To insert data into an EOxServer instance there are several ways. One is the
admin interface, which is explained in detail in the Admin Client section.

Another convenient way to register datasets is the command line interface to
EOxServer. As a Django application, the instance can be configured using the
manage.py [https://docs.djangoproject.com/en/1.4/ref/django-admin/] script.

EOxServer provides a specific command to insert datasets into the instance,
called eoxs_dataset_register. It is invoked from command line from your
instance base folder:

python manage.py eoxs_dataset_register --data DATAFILES --range-type RANGETYPE

The mandatory parameter --data is a path to a file containing the raster
data for the dataset to be inserted. If the file resides in a package (a ZIP or
TAR archive) then the location must be preceeded with the following:
<package-type>:<package-location>. It also possible to chain multiple
packages, e.g a ZIP file in a ZIP file containing the actual raster data.
In conjunction to packages, it is also possible to state the storage of the
data files. By default it is assumed that the data is available locally, but
other storages (such as FTP or HTTP backends) are also possible. If used, it
must be declared as first item in the aforementioned in the chain.

For each --data item a --semantic can be stated. The semantic defines
how this data item is being used. For example a semantic of "bands[1:3]"
defines that the first three bands of the dataset is in the first data item.

The same rules also apply for files declared via the --meta-data directive.
This basically creates a --data item with "metadata" semantic. Also,
these files are preferred when trying to determine the mandatory metadata of a
dataset.

To specify the Range Type of the dataset, the --range-type parameter is
mandatory to specify the name of a previously registered Range Type.

The following options are used to supply metadata values that are either not
possible to retrieve automatically or are to overwrite values automatically
collected:

	--identifier: the main identifier of the dataset

	
	--extent: the (minx,miny,maxx,maxy) bounding box of the dataset

	expressed in the units defined in --srid or
--projection

	--size: the pixel size of the dataset (size_x,size_y)

	--srid or --projection: the native projection of the dataset

	--footprint: the footprint (multi-) polygon in WKT format

	--begin-time and --end-time: the datasets time span

	--coverage-type: the type of the dataset

By default, a dataset is not advertised in WMS/WCS GetCapabilities. In order to
enable this, use the --visible flag.

When this dataset shall be inserted into a collection, use the --collection
option with the collections identifier. This option can be set multiple times
for different collections.

Recommendations for Operational Installation

Table of Contents

	Recommendations for Operational Installation
	Introduction EOxServer

	Directory Structure

	User Management
	Operating System Users

	Database User

	Django Sysadmin

	Application User Management

	EOxServer Configuration Step-by-step
	Step 1 - Web Server Installation

	Step 2 - Database Backend

	Step 3 - Creating Users and Directories for Instance and Data

	Step 4 - Instance Creation

	Step 5 - Database Setup

	Step 6 - Web Server Integration

	Step 7 - Start Operating the Instance

This section provides a set of recommendations and a step-by-step guide
for the installation and configuration of EOxServer as an operational system.
This guide goes beyond the basic installation presented in previous sections.

Unless stated otherwise this guide considers installing on CentOS GNU/Linux
operating systems although the guide is applicable for other distributions as
well.

We assume that the reader of this guide knows what the presented
commands are doing and he/she understands the possible consequences. This guide
is intended to help the administrator to setup the EOxServer quickly by
extracting the salient information but the administrator must be able
to alter the procedure to fit the particular needs of
the administered system. We bear no responsibility for any possible harms caused
by mindless following of this guide by a non-qualified person.

See also

	
	Installation

	generic installation procedure for GNU/Linux operating systems.

	
	Installation on CentOS

	for specific installation on CentOS.

	
	Service Instance Creation and Configuration

	to configure an instance of EOxServer after successful installation.

Introduction EOxServer

When installing and configuring EOxServer a clear distinction should be made
between the common EOxServer installation (the installed code implementing
the software functionality) and EOxServer instances. An instance is a
collection of data and configuration files that enables the deployment of a
specific service. A single server will typically contain a single software
installation and one or more specific instances.

While the EOxServer installation is straightforward and typically does not
require much effort (see the generic and
CentOS installation guides) the
configuration requires more attention of the
administrator and a bit of planning as well.

Closely related to EOxServer is the (possibly large) served EO data. It
should be borne in mind, that EOxServer as such is not a data management
system, i.e., it can register the stored data but does neither control nor
require any specific data storage locations itself. Where and how the data
is stored is thus in the responsibility of the administrator.

EOxServer registers the EO data and keeps only the essential metadata (data
and full metadata location, geographic extent, acquisition time, etc.)
in a database.

Directory Structure

First, the administrator has to decide in which directory each instance
should be located. Each of the EOxServer instances is represented by a
dedicated directory.

For system wide installation we recommend to create a single specific directory
to hold all instances in one location compliant with the filesystem hierarchy
standard [http://www.pathname.com/fhs/pub/fhs-2.3.html#SRVDATAFORSERVICESPROVIDEDBYSYSTEM]:

/srv/eoxserver

Optionally, for user defined instances a folder in the user’s home directory is
acceptable as well:

~/eoxserver

Note

We strongly discourage to keep the instance configuration in system
locations not suited for this purpose such as /root or /tmp!

A dedicated directory should also be considered for the served EO data, e.g.:

/srv/eodata

or:

~/eodata

User Management

The EOxServer administrator has to deal with four different user management
subsystems:

	system user (operating system),

	database user (SQL server),

	django user (Django user management), and

	application user (e.g., Single Sign On authentication).

Each of them is described hereafter.

Operating System Users

On a typical mutli-user operating system several users exist each of them
owning some files and each of them is given some right to access other files
and run executables.

In a typical EOxServer setup, the installed executables are owned by the
root user and when executed they are granted the rights of the invoking
process owner. When executed as a WGSI application, the running EOxServer
executables run with the same ID as the web server (for Apache server this
is typically the apache or www-data system user). This need to be
considered when specifying access rights for the files which are expected to
be changed or read by a running application.

The database back-end has usually its own dedicated system user (for
PostgreSQL this is typically postgres).

Coming back, for EOxServer instances’ configuration we recommend both
instance and data to be owned by one or (preferably) two distinct system or
ordinary users. These users can by existing (e.g., the apache user) or new
dedicated users.

Note

We strongly discourage to keep the EOxService instances
(i.e., configuration data) and the served EO data owned by the system
administrator (root).

Database User

The Django framework (which EOxSerevr is build upon) requires access to a
Database Management System (DBMS) which is typically protected by
user-name/password based authentication. Specification of these DBMS
credential is part of the service instance configuration.

The sole purpose of the DBMS credentials is to access the database.

It should be mentioned that user-name/password is not the only possible way how
to secure the database access. The various authentication options for PosgreSQL
are covered, e.g., here [http://www.postgresql.org/docs/devel/static/auth-pg-hba-conf.html].

Django Sysadmin

The Django framework provides its own user management subsystem. EOxServer
uses the Django user management system for granting access to the system
administrator to the low level Admin Web GUI.. The Django
user management is neither used to protect access to the provided Web
Service interfaces nor to restrict access via the command line tools.

Application User Management

EOxServer is based on the assumption that the authentication and
authorisation of an operational system would be performed by an external
security system (such as the Shibboleth based Single Sign On infrastructure). This access control would be
transparent from EOxServer’s point of view.

It is beyond the scope of this document to explain how to configure a Single
Sign On (SSO) infrastructure but principally the configuration does not
differ from securing plain apache web server.

EOxServer Configuration Step-by-step

The guidelines presented in this section assume a successful installation of
EOxServer and of the essential dependencies performed either from the
available RPM packages (see CentOS Installation from RPM Packages) or via
the Python Package Index (see Alternate installation method using pip).

This guide assume that the sudo [http://www.centos.org/docs/4/4.5/Security_Guide/s3-wstation-privileges-limitroot-sudo.html]
command is installed and configured on the system.

In case of installation from RPM repositories it is necessary to install the
required repositories first:

sudo rpm -Uvh http://elgis.argeo.org/repos/6/elgis-release-6-6_0.noarch.rpm
sudo yum install epel-release
sudo rpm -Uvh http://yum.packages.eox.at/el/eox-release-6-2.noarch.rpm

and then install EOxServer’s package:

sudo yum install EOxServer

Step 1 - Web Server Installation

EOxServer is a Django based web application and as such it needs a web
server (the simple Django provided server is not an option for an
operational system). Any instance of EOxServer receives HTTP requests via
the WSGI interface. EOxServer is tested to work with the Apache [http://www.apache.org/] web server using the WSGI [http://en.wikipedia.org/wiki/Web_Server_Gateway_Interface] module. The
server can be installed using:

sudo yum install httpd mod_wsgi

EOxServer itself is not equipped by any authentication or authorisation
mechanism. In order to secure the resources an external tool must be used to
control access to the resources (e.g., the Shibboleth Apache module or the
Shibboleth based Single Sign On).

To start the apache server automatically at the boot-time run following
command:

sudo chkconfig httpd on

The status of the web server can be checked by:

sudo service httpd status

and if not running the service can be started as follows:

sudo service httpd start

It is likely the ports offered by the web service are blocked by the firewall.
To allow access to port 80 used by the web service it should be mostly
sufficient to call:

sudo iptables -I INPUT -m state --state NEW -m tcp -p tcp --dport 80 -j ACCEPT

Setting up access to any other port than 80 (such as port 443 used by HTTPS)
is the same, just change the port number in the previous command.

To make these iptable firewall settings permanent (preserved throughout
reboots) run:

sudo service iptables save

Step 2 - Database Backend

EOxServer requires a Database Management System (DBMS) for the storage of its
internal data. For an operational system a local or remote installation of
PostgreSQL [http://www.postgresql.org/]
with PostGIS [http://postgis.net/] extension is recommended over the simple
file-based SQLite backend. To install the DBMS run following command:

sudo yum install postgresql postgresql-server postgis python-psycopg2

PostgreSQL comes with reasonable default settings which are often sufficient.
For details on more advanced configuration options (like changing the default
database location) see, e.g., PosgreSQL’s
wiki [http://wiki.postgresql.org/wiki/Main_Page]

On some Linux distributions like recent RHEL and its clones such as CentOS,
the PostgreSQL database must be initialized manually by:

sudo service postgresql initdb

To start the service automatically at boot time run:

sudo chkconfig postgresql on

You can check if the PostgreSQL database is running or not via:

sudo service postgresql status

If not start the PostgreSQL server:

sudo service postgresql start

Once the PostgreSQL deamon is running we have to setup a database template
including the required PostGIS extension:

sudo -u postgres createdb template_postgis
sudo -u postgres createlang plpgsql template_postgis
PG_SHARE=/usr/share/pgsql
sudo -u postgres psql -q -d template_postgis -f $PG_SHARE/contrib/postgis.sql
sudo -u postgres psql -q -d template_postgis -f $PG_SHARE/contrib/spatial_ref_sys.sql
psql -d postgres psql -q -d template_postgis -c "GRANT ALL ON geometry_columns TO PUBLIC;"
psql -d postgres psql -q -d template_postgis -c "GRANT ALL ON geography_columns TO PUBLIC;"
psql -d postgres psql -q -d template_postgis -c "GRANT ALL ON spatial_ref_sys TO PUBLIC;"

Please note that the PG_SHARE directory can vary for each Linux distribution
or custom PostgreSQL installation. For CentOS /usr/share/pgsql happens to
be the default location. The proper path can be found, e.g., by:

locate contrib/postgis.sql

Step 3 - Creating Users and Directories for Instance and Data

To create the users and directories for the EOxServer instances and the served
EO Data run the following commands:

sudo useradd -r -m -g apache -d /srv/eoxserver -c "EOxServer's administrator" eoxserver
sudo useradd -r -m -g apache -d /srv/eodata -c "EO data provider" eodata

For meaning of the used options see documentation of
useradd [http://unixhelp.ed.ac.uk/CGI/man-cgi?useradd+8] command.

Since we are going to access the files through the Apache web server, for
convenience, we set the default group to apache. In addition, to make the
directories readable by other users run the following commands:

sudo chmod o+=rx /srv/eoxserver
sudo chmod o+=rx /srv/eodata

Step 4 - Instance Creation

Now it’s time to setup a sample instance of EOxServer. Create a new instance
e.g., named instance00, using the eoxserver-instance.py command:

sudo -u eoxserver mkdir /srv/eoxserver/instance00
sudo -u eoxserver eoxserver-instance.py instance00 /srv/eoxserver/instance00

Now our first bare instance exists and needs to be configured.

Step 5 - Database Setup

As the first to animate the instance it is necessary to setup a database.
Assuming the Postgress DBMS is up an running, we start by creating a
database user (replace <db_username> by a user-name of your own choice):

sudo -u postgres createuser --no-createdb --no-superuser --no-createrole --encrypted --password <db_username>

The user’s password is requested interactively. Once we have the database user
we can create the database for our instance:

sudo -u postgres createdb --owner <db_username> --template template_postgis --encoding UTF-8 eoxs_instance00

Where eoxs_instance00 is the name of the new database. As there may be more
EOxServer instances, each of them having its own database, it is a good practice
to set a DB name containing the name of the instance.

In addition the PostgreSQL access policy must be set to allow access to the
newly created database. To get access to the database, insert the
following lines (replace <db_username> by your actual DB user-name):

local eoxs_instance00 <db_username> md5

to the file:

/var/lib/pgsql/data/pg_hba.conf

Note

This allows local database access only.

When inserting the line make sure you put this line before the default
access policy:

local all all ident

In case of an SQL server running on a separate machine please see PosgreSQL
documentation [http://www.postgresql.org/docs/devel/static/auth-pg-hba-conf.html].

The location of the pg_hba.conf file varies from one system to another.
In case of troubles to locate this file try, e.g.:

sudo locate pg_hba.conf

Once we created and configured the database we need to update the EOxServer
settings stored, in our case, in file:

/srv/eoxserver/instance00/instance00/settings.py

Make sure the database is configured in settings.py as follows:

DATABASES = {
 'default': {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': 'eoxs_instance00',
 'USER': '<db_username>',
 'PASSWORD': '<bd_password>',
 'HOST': '', # keep empty for local DBMS
 'PORT': '', # keep empry for local DBMS
 }
}

As in our previous examples replace <db_username> and <bd_password> by
the proper database user’s name and password.

Finally it is time to initialize the database of your first instance by running
the following command:

sudo -u eoxserver python /srv/eoxserver/instance00/manage.py syncdb

The command interactively asks for the creation of the Django system
administrator. It is safe to say no and create the administrator’s account
later by:

sudo -u eoxserver python /srv/eoxserver/instance00/manage.py createsuperuser

The manage.py is the command-line proxy for the management of EOxServer. To
avoid repeated writing of this fairly long command make a shorter alias such
as:

alias eoxsi00="sudo -u eoxserver python /srv/eoxserver/instance00/manage.py"
eoxsi00 createsuperuser

Step 6 - Web Server Integration

The remaining task to be performed is to integrate the created EOxServer
instance with the Apache web server. As it was already mentioned, the web
server access the EOxServer instance through the WSGI interface. We assume
that the web server is already configured to load the mod_wsgi module
and thus it remains to configure the WSGI access point. The proposed
configuration is to create the new configuration file
/etc/httpd/conf.d/default_site.conf with the following content:

<VirtualHost *:80>
 # EOxServer instance: instance00
 Alias /instance00 "/srv/eoxserver/instance00/instance00/wsgi.py"
 Alias /instance00_static "/srv/eoxserver/instance00/instance00/static"
 WSGIDaemonProcess ows processes=10 threads=1
 <Directory "/srv/eoxserver/instance00/instance00>
 Options +ExecCGI FollowSymLinks
 AddHandler wsgi-script .py
 WSGIProcessGroup ows
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>
</VirtualHost>

In case there is already a VirtualHost section present in
/etc/httpd/conf/httpd.conf or in any other *.conf file included from
the /etc/httpd/conf.d/ directory we suggest to add the configuration
lines given above to the appropriate virtual host section.

The WSGIDaemonProcess option forces execution of the Apache WSGI in daemon
mode using multiple single-thread processes. While the number of daemon
processes can be adjusted the number of threads must be always set to 1.

On systems such as CentOS, following option must be added to Apache
configuration (preferably in /etc/httpd/conf.d/wsgi.conf) to allow
communication between the Apache server and WSGI daemon (the reason is explained,
e.g., here [http://code.google.com/p/modwsgi/wiki/ConfigurationIssues]):

WSGISocketPrefix run/wsgi

Don’t forget to adjust the URL configuration in
/srv/eoxserver/instance00/instance00/conf/eoxserver.conf:

[services.owscommon]
http_service_url=http://<you-server-address>/instance00/ows

The location and base URL of the static files are specified in the EOxServer
instance’s setting.py file by the STATIC_ROOT and STATIC_URL
options:

...
STATIC_ROOT = '/srv/eoxserver/instance00/instance00/static/'
...
STATIC_URL = '/instance00_static/'
...

These options are set automatically by the instance creation script.

The static files needed by the EOxServer’s web GUI need to be initialized
(collected) using the following command:

alias eoxsi00="sudo -u eoxserver python /srv/eoxserver/instance00/manage.py"
eoxsi00 collectstatic -l

To allow the apache user to write to the instance log-file make sure the
user is permitted to do so:

sudo chmod g+w /srv/eoxserver/instance00/instance00/logs/eoxserver.log

And now the last thing to do remains to restart the Apache server by:

sudo service httpd restart

You can check that your EOxServer instance runs properly by inserting the
following URL to your browser:

http://<you-server-address>/instance00

Step 7 - Start Operating the Instance

Now we have a running instance of EOxServer. For different operations such as
data registration see EOxServer Operators’ Guide.

Migration

Table of Contents

	Migration
	Migration from 0.3 to 0.4

	Migration from 0.2 to 0.3
	Disclaimer

	Preparatory steps

	Software upgrade
	Django & GDAL

	EOxServer

	Instance migration

	New configuration options

Migrating or upgrading an existing EOxServer instance may require to perform
several tasks depending on the version numbers. In general upgrading
versions with changes in the third digit of the version number only e.g.
from 0.2.3 to 0.2.4 doesn’t need any special considerations. For all other
upgrades please carefully read the relevant sections below.

Migration from 0.3 to 0.4

Unfortunately there are no migrations from version 0.3 to version 0.4 due to a
major overhaul of the database schema and configuration. We recommend that you
upgrade the EOxServer software, create a new instance and register all the data
again.

Migration from 0.2 to 0.3

From version 0.2 to version 0.3 a lot of development effort has been put into
EOxServer. Many new features have been implemented and a couple of bugs are now
eradicated.

However, if you already have an instance running EOxServer 0.2, this requires a
couple of changes to that instance and enables you to configure some new
optional configurations aswell.

Disclaimer

Before trying to upgrade EOxServer please make sure to backup your database.
This step depends on the actual DBMS you are using for your instance.

Note

If you do not have a lot of datasets registered, or can easily reproduce
the current status of your instance, a complete newly created instance
may be more failsafe than trying to migrate your instance.

Warning

Because of changes in the database schema, the migration of referenceable
datasets does not work. Please re-register them once the instance is
migrated/re-created.

Preparatory steps

Before you upgrade your software, you will need to perform a database dump. The
dump is required to migrate your registered objects to the new database. It is
performed with the following call:

python manage.py dumpdata core backends coverages --indent=4 > dump.json

Unfortunately in some versions spatialite produces some output aswell, which
has to be removed from the top of the created dump.json file.

Software upgrade

Now you are ready to actually perform the software upgrade.

Django & GDAL

The most notable changes concern our technology base: Django & GDAL. EOxServer
now relies on features of Django 1.4, so if you still have Django 1.3 or lower
installed, please upgrade to (at least) that version. This step, however,
depends on how you installed Django in the first place. With pip it should
be easy as pie/py:

pip install Django --upgrade

If EOxServer is installed via pip, the upgrade of Django should be done
automagically.

Similar to Django, EOxServer now requires at least version 1.7 of the GDAL
library respectively its python bindings. GDAL is not explicitly stated in the
EOxServer dependencies to allow custom builds and OS specific installations. So
you are required to install the minimum required version on your own, via pip,
yum, apt, msi or whatever mechanism you prefer.

Please refer to the EOxServer Dependencies table for details on
dependencies.

EOxServer

The upgrade of EOxServer is quite similar to Installing EOxServer. For
pip you will need the -U (--upgrade) option:

pip install -U EOxServer==0.3

or

pip install -U “svn+http://eoxserver.org/svn/branches/0.3”

Instance migration

Now that you have installed your software, there is a small step to perform
which requires manual handling to upgrade your instance to the new version of
EOxServer.

Please open the conf/eoxserver.conf file within your instance directory and
locate the modules setting of the [core.registry] setting. The list
entry eoxserver.resources.coverages.covmgrs must be corrected to
eoxserver.resources.coverages.managers.

Now it is time to re-create your database which is done in three steps: deletion
of the old database, creation of a new one, and a synchronization. The deletion
and creation of the database depend on the database backend used. For SQLite,
for example, only the database file needs to be deleted.

The initialization of the database is done via:

python manage.py syncdb

The old contents of the database can be restored via:

python manage.py loaddata dump.json

New configuration options

Since version 0.2 a couple of new configuration options are available, most
notably for defining output formats and
CRSs. Please have a look at the relevant sections to
see how both are set up.

With Django 1.4, EOxServer allows a much more fine-grained logging mechanism
defined in settings.py. Details can be obtained from the Django
documentation [https://docs.djangoproject.com/en/dev/topics/logging/#configuring-logging].
The following is an example of how the logging is set up by default in new
EOxServer instances using version 0.3:

LOGGING = {
 'version': 1,
 'disable_existing_loggers': True,
 'filters': {
 'require_debug_false': {
 '()': 'django.utils.log.RequireDebugFalse'
 }
 },
 'formatters': {
 'simple': {
 'format': '%(levelname)s: %(message)s'
 },
 'verbose': {
 'format': '[%(asctime)s][%(module)s] %(levelname)s: %(message)s'
 }
 },
 'handlers': {
 'eoxserver_file': {
 'level': 'DEBUG',
 'class': 'logging.FileHandler',
 'filename': join(PROJECT_DIR, 'logs', 'eoxserver.log'),
 'formatter': 'verbose',
 'filters': [],
 }
 },
 'loggers': {
 'eoxserver': {
 'handlers': ['eoxserver_file'],
 'level': 'DEBUG' if DEBUG else 'INFO',
 'propagate': False,
 },
 }
}

Another important feature that was introduced in Django 1.4 is the implicit
support of time-zones. This can be activated in settings.py:

USE_TZ = True

For a complete list of changes in Django see the official documentation
(1.4 [https://docs.djangoproject.com/en/dev/releases/1.4/] and
1.5 [https://docs.djangoproject.com/en/dev/releases/1.5/]).

Mailing Lists

Table of Contents

	Mailing Lists
	Users Mailing List

	Dev Mailing List

Users Mailing List

The users mailing list is the primary means for EOxServer users and
developers to exchange and discuss ideas and potential software improvements,
and to ask questions.

Subscribe at http://eoxserver.org/mailman/listinfo/users/. You can later
change your subscription information or unsubscribe from the list at this
website too.

Here are some points to remember when posting to the list:

	Search the archive at http://eoxserver.org/pipermail/users/ or
http://eoxserver.2316974.n4.nabble.com/EOxServer-Users-f4264995.html for your
answer first, people get tired of answering the same questions over and over.

	Before posting subscribe to the list by following the procedure described
above.

	Post questions to the list by sending an email message to users@eoxserver.org.

	Provide version and configuration information for your EOxServer
installation, like relevant snippets of your configuration files.

	Always post your responses back to the whole list, as opposed to just the
person who replied to your question.

	Questions to the list are usually answered quickly and often by the
developers themselves.

Dev Mailing List

A separate mailing list is available for EOxServer developers. It is meant to be
used by individuals working on EOxServer source code and related libraries to
discuss issues that would not be of interest to the entire users mailing list.

Subscribe at http://eoxserver.org/mailman/listinfo/dev/. You can later change
your subscription information or unsubscribe from the list at this website too.

The archive is located at http://eoxserver.org/pipermail/dev/ or
http://eoxserver.2316974.n4.nabble.com/EOxServer-Dev-f4265142.html.

Demonstration

Table of Contents

	Demonstration
	GetCapabilities

	DescribeCoverage

	DescribeEOCoverageSet
	Dataset

	StitchedMosaic

	DatasetSeries

	GetCoverage

	GetCoverage POST/XML

The EOxServer demonstration is an instantiation of the autotest instance and is based on the Envisat MERIS sample data available here [http://earth.esa.int/object/index.cfm?fobjectid=4320].

The configuration includes one DatasetSeries and one StitchedMosaic both
combining the three available datasets:

	DatasetSeries (EOId: MER_FRS_1P_reduced) containing the 3 MERIS sample
datasets with all 15 radiance bands encoded as uint16 values

	StitchedMosaic (CoverageId: mosaic_MER_FRS_1P_reduced_RGB) containing
the 3 MERIS sample datasets reduced to RGB 8-bit

Note, the data has been reduced from 300m resolution to 3000m.

The demonstration tries to show the usage of all available
EO-WCS request parameters.

GetCapabilities

GetCapabilities [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=GetCapabilities]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=GetCapabilities

Interesting parts of the repsonse:

	Advertising EO-WCS:

<ows:Profile>http://www.opengis.net/spec/WCS_application-profile_earth-observation/1.0/conf/eowcs</ows:Profile>

	The additional EO-WCS operation:

<ows:Operation name="DescribeEOCoverageSet">
 <ows:DCP>
 <ows:HTTP>
 <ows:Get xlink:href="http://eoxserver.org/demo_stable/ows?" xlink:type="simple"/>
 <ows:Post xlink:href="http://eoxserver.org/demo_stable/ows?" xlink:type="simple">
 <ows:Constraint name="PostEncoding">
 <ows:AllowedValues>
 <ows:Value>XML</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:Post>
 </ows:HTTP>
 </ows:DCP>
</ows:Operation>

	The server will limit the number of CoverageDescription elements in DescribeEOCoverageSet responses:

<ows:Constraint name="CountDefault">
 <ows:NoValues/>
 <ows:DefaultValue>100</ows:DefaultValue>
</ows:Constraint>

	There is a StitchedMosaic available:

<wcs:CoverageSummary>
 <wcs:CoverageId>mosaic_MER_FRS_1P_reduced_RGB</wcs:CoverageId>
 <wcs:CoverageSubtype>RectifiedStitchedMosaic</wcs:CoverageSubtype>
</wcs:CoverageSummary>

	There is a DatasetSeries available:

<wcseo:DatasetSeriesSummary>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>-3.43798100 32.26454100</ows:LowerCorner>
 <ows:UpperCorner>27.96859100 46.21844500</ows:UpperCorner>
 </ows:WGS84BoundingBox>
 <wcseo:DatasetSeriesId>MER_FRS_1P_reduced</wcseo:DatasetSeriesId>
 <gml:TimePeriod gml:id="MER_FRS_1P_reduced_timeperiod">
 <gml:beginPosition>2006-08-16T09:09:29</gml:beginPosition>
 <gml:endPosition>2006-08-30T10:13:06</gml:endPosition>
 </gml:TimePeriod>
</wcseo:DatasetSeriesSummary>

DescribeCoverage

DescribeCoverage StitchedMosaic [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=DescribeCoverage&coverageid=mosaic_MER_FRS_1P_reduced_RGB]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=DescribeCoverage&
 coverageid=mosaic_MER_FRS_1P_reduced_RGB

DescribeCoverage Dataset [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=DescribeCoverage&coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=DescribeCoverage&
 coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed

DescribeEOCoverageSet

Dataset

DescribeEOCoverageSet Dataset [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=DescribeEOCoverageSet&EOId=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=DescribeEOCoverageSet&
 EOId=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed

StitchedMosaic

DescribeEOCoverageSet StitchedMosaic (4 Datasets returned) [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=DescribeEOCoverageSet&EOId=mosaic_MER_FRS_1P_reduced_RGB]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=DescribeEOCoverageSet&
 EOId=mosaic_MER_FRS_1P_reduced_RGB

DescribeEOCoverageSet StitchedMosaic, subset in time (3 Datasets returned) [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=DescribeEOCoverageSet&EOId=mosaic_MER_FRS_1P_reduced_RGB&subset=phenomenonTime(%222006-08-01%22,%222006-08-22T09:22:00Z%22)]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=DescribeEOCoverageSet&
 EOId=mosaic_MER_FRS_1P_reduced_RGB&
 subset=phenomenonTime("2006-08-01","2006-08-22T09:22:00Z")

DescribeEOCoverageSet StitchedMosaic, subset in Lat and Long, containment contains (1 Dataset returned) [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=DescribeEOCoverageSet&EOId=mosaic_MER_FRS_1P_reduced_RGB&subset=Lat(32,47)&subset=Long(11,33)&containment=contains]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=DescribeEOCoverageSet&
 EOId=mosaic_MER_FRS_1P_reduced_RGB&
 subset=Lat(32,47)&
 subset=Long(11,33)&
 containment=contains

DescribeEOCoverageSet StitchedMosaic, returned CoverageDescriptions limited to 2 [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=DescribeEOCoverageSet&EOId=mosaic_MER_FRS_1P_reduced_RGB&count=2]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=DescribeEOCoverageSet&
 EOId=mosaic_MER_FRS_1P_reduced_RGB&
 count=2

DatasetSeries

DescribeEOCoverageSet DatasetSeries (5 Datasets returned) [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=describeeocoverageset&eoid=MER_FRS_1P_reduced]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=describeeocoverageset&
 eoid=MER_FRS_1P_reduced

DescribeEOCoverageSet DatasetSeries, trim subset in time (4 Datasets returned) [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=describeeocoverageset&eoid=MER_FRS_1P_reduced&subset=phenomenonTime(%222006-08-01%22,%222006-08-22T09:22:00Z%22)]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=describeeocoverageset&
 eoid=MER_FRS_1P_reduced&
 subset=phenomenonTime("2006-08-01","2006-08-22T09:22:00Z")

DescribeEOCoverageSet DatasetSeries, slice subset in time (2 Dataset returned) [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=describeeocoverageset&eoid=MER_FRS_1P_reduced&subset=phenomenonTime(%222006-08-22T09:20:58Z%22)]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=describeeocoverageset&
 eoid=MER_FRS_1P_reduced&
 subset=phenomenonTime("2006-08-22T09:20:58Z")

DescribeEOCoverageSet DatasetSeries, trim subset in time trim, containment contains (2 Dataset returned) [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=describeeocoverageset&eoid=MER_FRS_1P_reduced&subset=phenomenonTime(%222006-08-01%22,%222006-08-22T09:22:00Z%22)&containment=contains]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=describeeocoverageset&
 eoid=MER_FRS_1P_reduced&
 subset=phenomenonTime("2006-08-01","2006-08-22T09:22:00Z")&
 containment=contains

DescribeEOCoverageSet DatasetSeries, subset in Lat and Long (5 Datasets returned) [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=describeeocoverageset&eoid=MER_FRS_1P_reduced&subset=Lat(32,47)&subset=Long(11,33)]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=describeeocoverageset&
 eoid=MER_FRS_1P_reduced&
 subset=Lat(32,47)&
 subset=Long(11,33)

DescribeEOCoverageSet DatasetSeries, subset in Lat and Long, containment contains (2 Dataset returned) [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=describeeocoverageset&eoid=MER_FRS_1P_reduced&subset=Lat(32,47)&subset=Long(11,33)&containment=contains]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=describeeocoverageset&
 eoid=MER_FRS_1P_reduced&
 subset=Lat(32,47)&
 subset=Long(11,33)&
 containment=contains

GetCoverage

GetCoverage StitchedMosaic, full (GML incl. contributingFootprint & GeoTIFF) [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=GetCoverage&coverageid=mosaic_MER_FRS_1P_reduced_RGB&format=image/tiff&mediatype=multipart/mixed]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=GetCoverage&
 coverageid=mosaic_MER_FRS_1P_reduced_RGB&
 format=image/tiff&
 mediatype=multipart/mixed

GetCoverage Dataset, full (GML & GeoTIFF) [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=GetCoverage&coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&format=image/tiff&mediatype=multipart/mixed&scalesize=x(200),y(200)]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=GetCoverage&
 coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&
 format=image/tiff&
 mediatype=multipart/mixed

GetCoverage Dataset, subset in pixels [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=GetCoverage&coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&format=image/tiff&mediatype=multipart/mixed&subset=x(100,200)&subset=y(300,400)]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=GetCoverage&
 coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&
 format=image/tiff&
 mediatype=multipart/mixed&
 subset=x(100,200)&
 subset=y(300,400)

GetCoverage Dataset, subset in epsg 4326 [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=GetCoverage&coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&format=image/tiff&mediatype=multipart/mixed&subset=Lat(40,41)&subset=Long(17,18)&subsettingCrs=http://www.opengis.net/def/crs/EPSG/0/4326]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=GetCoverage&
 coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&
 format=image/tiff&
 mediatype=multipart/mixed&
 subset=Lat(40,41)&
 subset=Long(17,18)&
 subsettingCrs=http://www.opengis.net/def/crs/EPSG/0/4326

GetCoverage Dataset, full, OutputCRS epsg 3035 [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=GetCoverage&coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&format=image/tiff&mediatype=multipart/mixed&OutputCRS=http://www.opengis.net/def/crs/EPSG/0/3035&scalesize=x(200),y(200)]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=GetCoverage&
 coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&
 format=image/tiff&
 mediatype=multipart/mixed&
 outputCrs=http://www.opengis.net/def/crs/EPSG/0/3035

GetCoverage Dataset, full, size 200x200 [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=GetCoverage&coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&format=image/tiff&mediatype=multipart/mixed&scalesize=x(200),y(200)]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=GetCoverage&
 coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&
 format=image/tiff&
 mediatype=multipart/mixed&
 scalesize=x(200),y(200)

GetCoverage Dataset, full, size 200x400 [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=GetCoverage&coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&format=image/tiff&mediatype=multipart/mixed&scalesize=x(200),y(400)]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=GetCoverage&
 coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&
 format=image/tiff&
 mediatype=multipart/mixed&
 scalesize=x(200),y(400)

GetCoverage Dataset, subset in bands [http://eoxserver.org/demo_stable/ows?service=wcs&version=2.0.1&request=GetCoverage&coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&format=image/tiff&mediatype=multipart/mixed&rangesubset=MERIS_radiance_01_uint16:MERIS_radiance_03_uint16]:

http://eoxserver.org/demo_stable/ows?
 service=wcs&
 version=2.0.1&
 request=GetCoverage&
 coverageid=MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed&
 format=image/tiff&
 mediatype=multipart/mixed&
 rangesubset=MERIS_radiance_01_uint16:MERIS_radiance_03_uint16

GetCoverage POST/XML

GetCoverage requests with POST/XML encoding might look like this:

A simple request:

<wcs:GetCoverage service="WCS" version="2.0.1"
 xmlns:wcs="http://www.opengis.net/wcs/2.0">
 <wcs:CoverageId>mosaic_MER_FRS_1PNPDE20060816_090929_000001972050_00222_23322_0058_RGB_reduced</wcs:CoverageId>
 <wcs:format>image/tiff</wcs:format>
 <wcs:mediaType>multipart/related</wcs:mediaType>
</wcs:GetCoverage>

With a subset in pixel coordinates:

<wcs:GetCoverage service="WCS" version="2.0.1"
 xmlns:wcs="http://www.opengis.net/wcs/2.0">
 <wcs:CoverageId>mosaic_MER_FRS_1PNPDE20060816_090929_000001972050_00222_23322_0058_RGB_reduced</wcs:CoverageId>
 <wcs:DimensionTrim>
 <wcs:Dimension>x</wcs:Dimension>
 <wcs:TrimLow>0</wcs:TrimLow>
 <wcs:TrimHigh>99</wcs:TrimHigh>
 </wcs:DimensionTrim>
 <wcs:DimensionTrim>
 <wcs:Dimension>y</wcs:Dimension>
 <wcs:TrimLow>0</wcs:TrimLow>
 <wcs:TrimHigh>99</wcs:TrimHigh>
 </wcs:DimensionTrim>
 <wcs:format>image/tiff</wcs:format>
 <wcs:mediaType>multipart/related</wcs:mediaType>
</wcs:GetCoverage>

With a subset in geographic coordinates with bilinear interpolation:

<wcs:GetCoverage service="WCS" version="2.0.1"
 xmlns:wcs="http://www.opengis.net/wcs/2.0"
 xmlns:int="http://www.opengis.net/wcs/interpolation/1.0"
 xmlns:crs="http://www.opengis.net/wcs/crs/1.0">
 <wcs:Extension>
 <crs:subsettingCrs>http://www.opengis.net/def/crs/EPSG/0/4326</crs:subsettingCrs>
 <int:Interpolation>
 <int:globalInterpolation>http://www.opengis.net/def/interpolation/OGC/1/bilinear</int:globalInterpolation>
 </int:Interpolation>
 </wcs:Extension>
 <wcs:CoverageId>mosaic_MER_FRS_1PNPDE20060816_090929_000001972050_00222_23322_0058_RGB_reduced</wcs:CoverageId>
 <wcs:DimensionTrim>
 <wcs:Dimension>Long</wcs:Dimension>
 <wcs:TrimLow>20</wcs:TrimLow>
 <wcs:TrimHigh>22</wcs:TrimHigh>
 </wcs:DimensionTrim>
 <wcs:DimensionTrim>
 <wcs:Dimension>Lat</wcs:Dimension>
 <wcs:TrimLow>36</wcs:TrimLow>
 <wcs:TrimHigh>38</wcs:TrimHigh>
 </wcs:DimensionTrim>
 <wcs:format>image/tiff</wcs:format>
 <wcs:mediaType>multipart/related</wcs:mediaType>
</wcs:GetCoverage>

With a range-subset and pixel-subset:

<wcs:GetCoverage service="WCS" version="2.0.1"
 xmlns:wcs="http://www.opengis.net/wcs/2.0"
 xmlns:rsub="http://www.opengis.net/wcs/range-subsetting/1.0">
 <wcs:Extension>
 <rsub:RangeSubset>
 <rsub:RangeItem>
 <rsub:RangeComponent>MERIS_radiance_04_uint16</rsub:RangeComponent>
 </rsub:RangeItem>
 <rsub:RangeItem>
 <rsub:RangeInterval>
 <rsub:startComponent>MERIS_radiance_05_uint16</rsub:startComponent>
 <rsub:endComponent>MERIS_radiance_07_uint16</rsub:endComponent>
 </rsub:RangeInterval>
 </rsub:RangeItem>
 </rsub:RangeSubset>
 </wcs:Extension>
 <wcs:CoverageId>MER_FRS_1PNPDE20060822_092058_000001972050_00308_23408_0077_uint16_reduced_compressed</wcs:CoverageId>
 <wcs:DimensionTrim>
 <wcs:Dimension>x</wcs:Dimension>
 <wcs:TrimLow>0</wcs:TrimLow>
 <wcs:TrimHigh>99</wcs:TrimHigh>
 </wcs:DimensionTrim>
 <wcs:DimensionTrim>
 <wcs:Dimension>y</wcs:Dimension>
 <wcs:TrimLow>0</wcs:TrimLow>
 <wcs:TrimHigh>99</wcs:TrimHigh>
 </wcs:DimensionTrim>
 <wcs:format>image/tiff</wcs:format>
 <wcs:mediaType>multipart/related</wcs:mediaType>
</wcs:GetCoverage>

With a set of GeoTIFF encoding parameters:

<wcs:GetCoverage service="WCS" version="2.0.1"
 xmlns:wcs="http://www.opengis.net/wcs/2.0"
 xmlns:geotiff="http://www.opengis.net/gmlcov/geotiff/1.0">
 <wcs:CoverageId>mosaic_MER_FRS_1PNPDE20060816_090929_000001972050_00222_23322_0058_RGB_reduced</wcs:CoverageId>
 <wcs:format>image/tiff</wcs:format>
 <wcs:Extension>
 <geotiff:parameters>
 <geotiff:compression>Deflate</geotiff:compression>
 <geotiff:predictor>FloatingPoint</geotiff:predictor>
 <geotiff:interleave>Band</geotiff:interleave>
 <geotiff:tiling>true</geotiff:tiling>
 <geotiff:tilewidth>32</geotiff:tilewidth>
 <geotiff:tileheight>64</geotiff:tileheight>
 </geotiff:parameters>
 </wcs:Extension>
</wcs:GetCoverage>

EO-WCS Request Parameters

Table of Contents

	EO-WCS Request Parameters
	GetCapabilities

	DescribeCoverage

	DescribeEOCoverageSet

	GetCoverage

The following tables provide an overview over the available EO-WCS request
parameters for each operation supported by EOxServer.

Please see EOxServer’s Demonstration for complete sample requests.

GetCapabilities

Table: “EO-WCS GetCapabilities Request Parameters” below lists all
parameters that are available with Capabilities requests.

EO-WCS GetCapabilities Request Parameters

	Parameter
	Description / Subparameter
	Allowed value(s) / Example
	Mandatory (M) / Optional (O)

	→ service
	Requested service
	WCS
	M

	→ request
	Type of request
	GetCapabilities
	M

	→ version [1]
	Version number
	2.0.1
	O

	→ acceptVersions [1]
	Prioritized sequence of one or more specification
versions accepted by the client, with preferred versions
listed first (first supported version will be used)
version1[,version2[,...]]
	2.0.1, 1.1.2, 1.0.0
	O

	→ sections
	Comma-separated unordered list of zero or more names of
zero or more names of sections of service metadata
document to be returned in service metadata document.
Request only certain sections of Capabilities
Document section1[,section2[,...]]
	
	DatasetSeriesSummary

	CoverageSummary

	Contents

	All

	ServiceIdentification

	ServiceProvider

	OperationsMetadata

	Languages

	O

	→ updateSequence
	Date of last issued GetCapabilities request; to receive
new document only if it has changed since
	“2013-05-08”
	O

DescribeCoverage

Table: “EO-WCS DescribeCoverage Request Parameters” below lists all
parameters that are available with DescribeCoverage requests.

EO-WCS DescribeCoverage Request Parameters

	Parameter
	Description / Subparameter
	Allowed value(s) / Example
	Mandatory (M) / Optional (O)

	→ service
	Requested service
	WCS
	M

	→ request
	Type of request
	DescribeCoverage
	M

	→ version [1]
	Version number
	2.0.1
	M

	→ coverageId
	NCName(s):

	valid coverageID of a Dataset

	valid coverageID of a StichedMosaic

	
	M

DescribeEOCoverageSet

Table: “EO-WCS DescribeEOCoverageSet Request Parameters” below
lists all parameters that are available with DescribeEOCoverageSet requests.

EO-WCS DescribeEOCoverageSet Request Parameters

	Parameter
	Description / Subparameter
	Allowed value(s) / Example
	Mandatory (M) / Optional (O)

	→ service
	Requested service
	WCS
	M

	→ request
	Type of request
	DescribeEOCoverageSet
	M

	→ version [1]
	Version number
	2.0.1
	M

	→ eoId
	Valid eoId:

	using the coverageId of a Datatset

	using the eoId of a DatatsetSeries

	using the coverageId of a StitchedMosaic

	
	M

	→ subset
	Allows to constrain the request in each dimensions and
define how these parameters are applied.

The spatial constraint is expressed in WGS84, the
temporal constraint in ISO

 OpenSearch

OpenSearch

Table of Contents

	OpenSearch
	Introduction

	Setup

	Usage
	Collection Search

	Record Search

	Parameters

	Output Formats
	ATOM and RSS

	GeoJSON and KML

	Enabling/Disabling Formats

	Future Work

Introduction

Since version 0.4, EOxServer features an OpenSearch 1.1 interface to allow the
exploration of its contents in a different manner than by using the EO-WCS or
WMS functionality.

In contrast to EO-WCS and WMS, the OpenSearch interface operates on metadata
only and allows a performant view of the data, by using slimmer output formats
such as GeoJSON or Atom/RSS XML structures.

In EOxServer, both the Time [http://www.opensearch.org/Specifications/OpenSearch/Extensions/Time/1.0/Draft_1]
and the
Geo [http://www.opensearch.org/Specifications/OpenSearch/Extensions/Geo/1.0/Draft_2]
extensions are implemented to limit the spatio-temporal scope of the search.

Setup

To enable the OpenSearch interface in the EOxServer instance, the urls.py
has to be adjusted and the following line added:

from django.conf.urls import patterns, include, url
...
from eoxserver.services.opensearch.urls import urlpatterns as opensearch

urlpatterns = patterns('',
 ...
 url(r'^opensearch/', include(opensearch)),
 ...
)

This adds the necessary URLs and views to the instances setup to expose the
interface to the users.

Additionally, the the string "eoxserver.services.opensearch.**" has to be
added to the COMPONENTS of the settings.py file.

Usage

The OpenSearch implementation of EOxServer follows a two-step search approach:

	the instance can be searched for collections

	single collections can be searched for records

For each of those steps, the OpenSearch interface allows two interactions, the
description and the``search``.
The description operation returns an XML document with service metadata and
parametrized endpoints for further searches. The search operation hosts the
main searching functionality: the search parameters are sent the service, and
the results are encoded end returned.

Collection Search

To get the description of the OpenSearch service running in your instance, you
have to access the URL previously specified in the urlpatterns. In the
autotest instance, this looks like this:

$ curl http://localhost/opensearch/
<?xml version='1.0' encoding='iso-8859-1'?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="">
 <ShortName/>
 <Description/>
 <Url type="application/atom+xml" rel="collection" template="http://localhost/opensearch/atom/?q={searchTerms?}&count={count?}&startIndex={startIndex?}&bbox={geo:box?}&geom={geo:geometry?}&lon={geo:lon?}&lat={geo:lat?}&r={geo:radius?}&georel={geo:relation?}&uid={geo:uid?}&start={time:start?}&end={time:end?}&timerel={time:relation?}"/>
 <Url type="application/vnd.geo+json" rel="collection" template="http://localhost/opensearch/json/?q={searchTerms?}&count={count?}&startIndex={startIndex?}&bbox={geo:box?}&geom={geo:geometry?}&lon={geo:lon?}&lat={geo:lat?}&r={geo:radius?}&georel={geo:relation?}&uid={geo:uid?}&start={time:start?}&end={time:end?}&timerel={time:relation?}"/>
 <Url type="application/vnd.google-earth.kml+xml" rel="collection" template="http://localhost/opensearch/kml/?q={searchTerms?}&count={count?}&startIndex={startIndex?}&bbox={geo:box?}&geom={geo:geometry?}&lon={geo:lon?}&lat={geo:lat?}&r={geo:radius?}&georel={geo:relation?}&uid={geo:uid?}&start={time:start?}&end={time:end?}&timerel={time:relation?}"/>
 <Url type="application/rss+xml" rel="collection" template="http://localhost/opensearch/rss/?q={searchTerms?}&count={count?}&startIndex={startIndex?}&bbox={geo:box?}&geom={geo:geometry?}&lon={geo:lon?}&lat={geo:lat?}&r={geo:radius?}&georel={geo:relation?}&uid={geo:uid?}&start={time:start?}&end={time:end?}&timerel={time:relation?}"/>
 <Contact/>
 <LongName/>
 <Developer/>
 <Attribution/>
 <SyndicationRight>open</SyndicationRight>
 <AdultContent/>
 <Language/>
 <InputEncoding/>
 <OutputEncoding/>
</OpenSearchDescription>

As you can see, the description XML document contains a Url element for each
registered output format. Each URL also has a set of parameter placeholders from which the
actual query can be constructed. Most of the parameters are optional, as
indicated by the suffixed ? within the curly braces.

To perform a search for collections, a request template has to be used and
filled with parameters. See this example, where a simple bounding box is used to
limit the search:

$ curl http://localhost/opensearch/atom/?bbox=10,33,12,35
<feed xmlns:georss="http://www.georss.org/georss" xmlns:geo="http://a9.com/-/opensearch/extensions/geo/1.0/" xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/" xmlns:time="http://a9.com/-/opensearch/extensions/time/1.0/" xmlns="http://www.w3.org/2005/Atom">
 <id>http://localhost/opensearch/atom/?bbox=10,33,12,35</id>
 <title>None Search</title>
 <link href="http://localhost/opensearch/atom/?bbox=10,33,12,35" rel="self"/>
 <description/>
 <opensearch:totalResults>1</opensearch:totalResults>
 <opensearch:startIndex>0</opensearch:startIndex>
 <opensearch:itemsPerPage>1</opensearch:itemsPerPage>
 <opensearch:Query role="request" geo:box="10,33,12,35"/>
 <link href="http://localhost/opensearch/" type="application/opensearchdescription+xml" rel="search"/>
 <link href="http://localhost/opensearch/atom/?bbox=10,33,12,35" type="application/atom+xml" rel="self"/>
 <link href="http://localhost/opensearch/atom/?bbox=10%2C33%2C12%2C35" type="application/atom+xml" rel="first"/>
 <link href="http://localhost/opensearch/atom/?startIndex=1&bbox=10%2C33%2C12%2C35" type="application/atom+xml" rel="last"/>
 <entry>
 <title>MER_FRS_1P_reduced_RGB</title>
 <id>MER_FRS_1P_reduced_RGB</id>
 <link href="http://localhost/opensearch/collections/MER_FRS_1P_reduced_RGB/" rel="search"/>
 <georss:box>32.264541 -3.437981 46.218445 27.968591</georss:box>
 </entry>
</feed>

The resulting atom feed contains information used for paging and the matched
collections. Each entry (or item in RSS) contains a rough metadata
overview of the collection and a link to the collections OpenSearch description
document, which can be used to make searches for records within the collection.

Record Search

Searching for records within a collection is very similar to searching for
collections on the service itself. The first step is to obtain the OpenSearch
description document for the collections:

$ curl http://localhost/opensearch/collections/MER_FRS_1P_reduced_RGB/
<?xml version='1.0' encoding='iso-8859-1'?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="">
 <ShortName/>
 <Description/>
 <Url type="application/atom+xml" rel="results" template="http://localhost/opensearch/collections/MER_FRS_1P_reduced_RGB/atom/?q={searchTerms?}&count={count?}&startIndex={startIndex?}&bbox={geo:box?}&geom={geo:geometry?}&lon={geo:lon?}&lat={geo:lat?}&r={geo:radius?}&georel={geo:relation?}&uid={geo:uid?}&start={time:start?}&end={time:end?}&timerel={time:relation?}"/>
 <Url type="application/vnd.geo+json" rel="results" template="http://localhost/opensearch/collections/MER_FRS_1P_reduced_RGB/json/?q={searchTerms?}&count={count?}&startIndex={startIndex?}&bbox={geo:box?}&geom={geo:geometry?}&lon={geo:lon?}&lat={geo:lat?}&r={geo:radius?}&georel={geo:relation?}&uid={geo:uid?}&start={time:start?}&end={time:end?}&timerel={time:relation?}"/>
 <Url type="application/vnd.google-earth.kml+xml" rel="results" template="http://localhost/opensearch/collections/MER_FRS_1P_reduced_RGB/kml/?q={searchTerms?}&count={count?}&startIndex={startIndex?}&bbox={geo:box?}&geom={geo:geometry?}&lon={geo:lon?}&lat={geo:lat?}&r={geo:radius?}&georel={geo:relation?}&uid={geo:uid?}&start={time:start?}&end={time:end?}&timerel={time:relation?}"/>
 <Url type="application/rss+xml" rel="results" template="http://localhost/opensearch/collections/MER_FRS_1P_reduced_RGB/rss/?q={searchTerms?}&count={count?}&startIndex={startIndex?}&bbox={geo:box?}&geom={geo:geometry?}&lon={geo:lon?}&lat={geo:lat?}&r={geo:radius?}&georel={geo:relation?}&uid={geo:uid?}&start={time:start?}&end={time:end?}&timerel={time:relation?}"/>
 <Contact/>
 <LongName/>
 <Developer/>
 <Attribution/>
 <SyndicationRight>open</SyndicationRight>
 <AdultContent/>
 <Language/>
 <InputEncoding/>
 <OutputEncoding/>
</OpenSearchDescription>

Again, the result contains a list of URL templates, one for each enabled result
format. These templates can be used to perform the searches for records. The
following example uses a time span to limit the records:

$ curl "http://localhost/opensearch/collections/MER_FRS_1P_reduced_RGB/json/?start=2006-08-16T09:09:29Z&end=2006-08-22T09:09:29Z"
{
"type": "FeatureCollection",
"bbox": [11.648344, 32.269746, 27.968591, 46.216558],
"features": [
{ "type": "Feature", "properties": { "id": "mosaic_MER_FRS_1PNPDE20060816_090929_000001972050_00222_23322_0058_RGB_reduced", "begin_time": "2006-08-16T09:09:29Z", "end_time": "2006-08-16T09:12:46Z" }, "bbox": [11.648344, 32.269746, 27.968591, 46.216558], "geometry": { "type": "MultiPolygon", "coordinates": [[[[14.322576, 46.216558], [14.889221, 46.152076], [15.714163, 46.044475], [16.939196, 45.874384], [18.041168, 45.707637], [19.696621, 45.437661], [21.061979, 45.188708], [22.14653, 44.985502], [22.972839, 44.817601], [24.216794, 44.548719], [25.078471, 44.353026], [25.619454, 44.222401], [27.096691, 43.869453], [27.968591, 43.648678], [27.608909, 42.914276], [26.904154, 41.406745], [26.231198, 39.890887], [25.79281, 38.857425], [25.159378, 37.327455], [24.607823, 35.91698], [24.126822, 34.659956], [23.695477, 33.485864], [23.264471, 32.269746], [21.93772, 32.597366], [20.490342, 32.937415], [18.720985, 33.329502], [17.307239, 33.615994], [16.119969, 33.851259], [14.83709, 34.086159], [13.692708, 34.286728], [12.702329, 34.450209], [11.648344, 34.612576], [11.818952, 35.404302], [12.060892, 36.496444], [12.273682, 37.456615], [12.465752, 38.338768], [12.658489, 39.179619], [12.861886, 40.085426], [13.125704, 41.224754], [13.249298, 41.773101], [13.442094, 42.58703], [13.647311, 43.450338], [13.749196, 43.879742], [13.904244, 44.51596], [14.076176, 45.247154], [14.21562, 45.812577], [14.322576, 46.216558]]]] } }

]
}

Parameters

As mentioned before, EOxServers implementation of OpenSearch adheres to the core,
and the time and geo extensions. Thus the interface allows the following
parameters when searching for datasets:

OpenSearch Search Request Parameters

	Parameter (Replacement Tag)
	Description
	Example

	→ q (searchTerms)
	This parameter is currently not used.
	

	→ count
	Number of returned elements as an integer
	count=25

	→ startIndex
	The initial offset to get elements as an integer
	startIndex=125

	→ format
	The output format of the search. Currently supported are
“json”, “kml”, “atom”, and “rss”.
	format=json

	→ bbox (geo:box)
	The geographical area expressed as a bounding box defined
as “west,south,east,north” in EPSG:4326 decimal degrees.
	bbox=-120.0,40.5,-110.5,43.8

	→ lat and lon
(geo:lat/geo:lon)
	latitude and longitude geographical coordinate pair as
decimal degrees in EPSG:4326.
	lat=32.25&lon=125.654

	→ r (geo:radius)
	The radius parameter used with lat and lon parameters.
Units are meters on along the earths surface.
	lat=32.25&lon=125.654

	→ geom (geo:geometry)
	A custom geometry encoded as WKT. Supported are
POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING,
and MULTIPOLYGON. The geometry must be expressed in
EPSG:4326.
	geom=POINT(6 10)
geom=LINESTRING(3 4,1 5,20 25)

	→ georel (geo:relation)
	The geospatial relation of the supplied geometry (or
bounding box/circle) and the
searched datasets geometry. This parameter allows the
following values:
- “intersects” (default): the passed geometry has to

intersect with the datasets geometry

	“contains”: the passed geometry has to fully enclose
datasets geometry. Currently only PostgreSQL/PostGIS
supports this relation for distance lookups.

	“disjoint”: the passed geometry has no spatial overlap
with the datasets geometry.

	georel=contains

	→ uid (geo:uid)
	This parameter allows to match a single record by its
exact identifier. This is also used to allow links to
searches with only a specific item, as used in the atom
and RSS formats.
	uid=MER_FRS_1P_reduced_RGB

	→ start and end
(time:start/time:end)
	The start and end data/time of the given time interval
encoded in
ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601].
	start=2006-08-16T09:09:29Z&
end=2006-08-17

	→ timerel (time:relation)
	The temporal relation between the passed interval and the
datasets time intervals. This parameter allows the
following values:
- “intersects”: the given interval has to somehow

intersect with the datasets time span.

	“during”: the given interval has to enclose the
datasets time span.

	“disjoint”: the given interval must have no temporal
overlap with the datasets time span.

	“equals”: the given interval has to exactly match the
datasets time span.

	timerel=equals

Note

Unfortunately there are some known issues for certain parameters, especially
concerning the geo:radius with the geo:lat and geo:lon: On
certain platforms any distance based search results in an abort caused by
GEOS [https://trac.osgeo.org/geos/ticket/377], the underlying geometric
algorithm library.

All parameters are available for both collection and record searches.

Output Formats

EOxServer supports various output formats to encode the results of the searches.
All formats are available for both collection and record searches.

ATOM and RSS

The EOxServer OpenSearch implementation tries to adhere the specification and
recommendations for using OpenSearch with either of the two formats.
Apart from the usual metadata links are added to the various enabled services
like WMS and WCS wherever applicable. When searching for collections a link to
the collections OpenSearch description document is also added.

GeoJSON and KML

These formats aim to provide only a compact metadata overview of the matched
collections and records. Only the identifier, begin/end timestamps and the
footprint geometry are included.

Enabling/Disabling Formats

With the steps described in Setup, all formats are enabled by default. To limit
the available formats, the line added to the line
"eoxserver.services.opensearch.**" of the COMPONENTS setting in the
settings.py must be replaced by the following:

COMPONENTS = [
 ...
 "eoxserver.services.opensearch.v11.*",
 "eoxserver.services.opensearch.extensions.*",
 "eoxserver.services.opensearch.formats.<format>",
]

where <format> is one of atom, geojson, kml or rss. To
enable more than one format, the last line can be repeated for each format.

Future Work

As of EOxServer version 0.4, it is planned to also implement support for the
OpenSearch EO [https://portal.opengeospatial.org/files/?artifact_id=61006]
extension. This extension was held back on purpose, as the current data models
do not include the necessary metadata fields.

Additionally, the aim is to support most of the required and recommended
best practices of the CEOS OpenSearch Best Practice Document [https://earthdata.nasa.gov/files/CEOS_OpenSearch_Best_Practice_Doc-v.1.0.1_Jun2015.pdf].

 EOxServer Operators’ Guide

EOxServer Operators’ Guide

Table of Contents

	EOxServer Operators’ Guide
	Basic Concepts

	Storage Backends
	Local

	FTP Repositories

	Rasdaman Databases

	Data Items

	Coverages
	Range Types

	Rectified Datasets

	Referenceable Datasets

	Rectified Stitched Mosaics

	Dataset Series

	Data Preparation and Supported Data Formats
	Raster Data Formats

	Raster Data Preparation

	Metadata Formats

	Metadata Preparation

	Admin Client
	Creating a custom Range Type

	Creating a Dataset

	Creating a Dataset Series or a Stitched Mosaic

	Command Line Tools
	eoxserver-instance.py

	eoxs_dataset_register

	eoxs_dataset_deregister

	Updating Datasets

	eoxs_collection_create

	eoxs_collection_delete

	eoxs_collection_link and eoxs_collection_unlink

	eoxs_collection_purge

	eoxs_collection_datasource

	eoxs_collection_synchronize

	eoxs_id_check

	Range Type Handling

	Performance

Basic Concepts

EOxServer is all about coverages - see the EOxServer Basics for a short
description.

In the language of the OGC Abstract Specification, coverages are mappings from
a domain set that is related to some area of the Earth to a range set. So, the
data model for coverages contains information about the structure of the
domain set and of the range set (the so-called Range Type).

In the Coverages section below you find more detailed information
about what data and metadata is stored by EOxServer.

The actual data EOxServer deals with can be stored in different ways. These
storage facilities are discussed below in the section on
Storage Backends.

Operators have different possibilities to ingest data into the system. Using
the Admin Client, you can edit the contents of the EOxServer database.
Especially for batch processing using the Command Line Tools may be preferable.

Storage Backends

EOxServer supports different kinds of data stores for coverage data (additional
backends can be added as plugin):

	as an image file stored on the local file system

	as an image file stored on a remote FTP or HTTP server

	as a raster array in a rasdaman [http://www.rasdaman.org] database

Local

A path on the local filesystem is the most straightforward way to define the
location of a resource. You can use relative paths as well as absolute paths.
Please keep in mind that relative paths are interpreted as being relative to
the working directory of the process EOxServer runs in. For Apache processes,
for instance, this is usually the root directory /.

FTP Repositories

EOxServer allows to define locations on a remote FTP server. This is useful
if you do not want to transfer a whole large archive to the machine EOxServer
runs on. In that case you can define a remote path that consists of information
about the FTP server and the path relative to the root directory of the
FTP repository.

An FTP Storage record - as it is called in EOxServer - contains the URL of the
server and optional port, username and password entries.

Resources stored on an FTP server are transferred only when they are needed.
There is however a cache for transferred files on the machine EOxServer runs on.

Rasdaman Databases

The third backend supported at the moment are
rasdaman [http://www.rasdaman.org] databases. A rasdaman location consists
of rasdaman database connection information and the collection of the
corresponding resource.

The rasdaman storage records contain hostname, port, database name, user and
password entries.

The data is retrieved from the database using the rasdaman GDAL driver (see
Installation for further information).

Data Items

A data item describes a single resource located on a storage, where the “local”
storage (the local filesystem) is assumed if no other storage is defined. The
path of a data item is always relative to its storage and might in some special
cases have a specific meaning. This is defined in the Storage plugin that
handles the specific backend.

Each data item has a semantic, which defines the actual usage of this data
item. This might be “metadata” for metadata files or “bands[1:3]” for raster
data. The usage of this field is really generic and depends on the context.

The format of a data item has informative character of how it might be
interpreted. Use default MIME types here.

Coverages

EOxServer coverages fall into three main categories:

	Rectified Datasets

	Referenceable Datasets

	Rectified Stitched Mosaics

In addition there is the Dataset Series type which corresponds to an
inhomogeneous collection of coverages.

Every coverage is a set of associated Data Items which define where the actual
data of the coverage can be found.

Additionally every coverage has associated EO Metadata, that defines the
acquisition time and the area of interest whithin the coverage.

Range Types

Every coverage has a range type describing the structure of the data.
Each range type has a given data type whereas the following data types are
supported:

	Data Type Name
	Data Type Value

	Unknown
	0

	Byte
	1

	UInt16
	2

	Int16
	3

	UInt32
	4

	Int32
	5

	Float32
	6

	Float64
	7

	CInt16
	8

	CInt32
	9

	CFloat32
	10

	CFloat64
	11

A range type contains of one or more bands. For each band you may specify a
name, an identifier and a definition that describes the property measured
(e.g. radiation). Furthermore, you can define nil values for each band (i.e.
values that indicate that there is no measurement at the given position).

This range type metadata is used in the coverage description metadata that is
returned by WCS operations and for configuring WMS layers.

Note that WMS supports only one data type (Byte) and only Grayscale and RGB
output. Any other range types will be mapped to these: for single-band coverages,
Grayscale output is generated and RGB output using the first three bands for all
others. Automatic scaling is applied when mapping from another data type to
Byte. That means the minimum-maximum interval for the given subset of the
coverage is computed and mapped to the 0-255 interval supported by the Byte
data type.

If you want to view other band combinations than the default ones, you can use
the EO-WMS features implemented by EOxServer. For each coverage, an additional
layers called <coverage id>_bands is provided for WMS 1.3. Using this
layer and the DIM_BANDS KVP parameter you can select another combination
of bands (either 1 or 3 bands).

Rectified Datasets

Rectified Datasets are EO coverages whose domain set is a rectified grid i.e.
which are having a regular spacing in projected or geographic CRS. In practice,
this applies to ortho-rectified satellite data. The rectified grid is described
by the EPSG SRID of the coordinate reference system, the extent and pixel size
of the coverage.

Rectified Datasets can be added to Dataset Series and Rectified Stitched
Mosaics.

Referenceable Datasets

Referenceale Datasets are EO coverages whose domain set is a referenceable grid
i.e. which are not rectified, but are associated with (one or more) coordinate
transformation which relate the image to a projected or geographic CRS.
That means that there is some general transformation between the grid cell
coordinates and coordinates in an Earth-bound spatial reference system. This
applies for satellite data in its original geometry.

At the moment, EOxServer supports only referenceable datasets that contain
ground control points (GCPs) in the data files. Simple approximative
transformations based on these GCPs are used to generate rectified views on the
data for WMS and to calculate subset bounds for WCS GetCoverage requests. Note
that these transformations can be very inaccurate in comparison to an actual
ortho-rectification of the coverage.

Rectified Stitched Mosaics

Rectified Stitched Mosaics are EO coverages that are composed of a set of
homogeneous Rectified Datasets. That means, the datasets must have the same
range type and their domain sets must be subsets of the same rectified grid.

When creating a Rectified Stitched Mosaic a homogeneous coverage is generated
from the contained Rectified Datasets. Where datasets overlap the most recent
one as indicated by the acquisition timestamps in the EO metadata is shown on
top hiding the others.

Dataset Series

Any Rectified and Referenceable Datasets can be organized in Dataset Series.
Multiple datasets which are spatially and/or temporally overlapping can be
organized in a Dataset Series. Furthermore Stitched Mosaics can also be
organized in Dataset Series.

Data Preparation and Supported Data Formats

EO Coverages consist of raster data and metadata. The way this data is
stored can vary considerably. EOxServer supports a wide range of different
data and metadata formats which are described below.

Raster Data Formats

EOxServer uses the GDAL [http://www.gdal.org] library for raster data
handling. So does MapServer [http://www.mapserver.org] whose scripting API
(MapScript) is used by EOxServer as well. In principle, any format supported
by GDAL [http://www.gdal.org/formats_list.html] can be read by EOxServer and
registered in the database.

There is, however, one caveat. Most data formats are composed of bands which
contain the data (e.g. ENVISAT N1, GeoTIFF, JPEG 2000). But some data formats
(notably netCDF and HDF) have a different substructure: subdatasets. At the
moment these data formats are only supported for data output, but not for data
input.

For more information on configuration of supported raster file formats read
“Supported Raster File Formats and Their Configuration”.

Raster Data Preparation

Usually, raster data does not need to be prepared in a special way to be
ingested into EOxServer.

If the raster data file is structured in subdatasets, though, as is the case
with netCDF and HDF, you will have to convert it to another format. You can use
the gdal_translate command for that task:

$ gdal_translate -of <Output Format> <Input File Name> <Output File Name>

You can display the list of possible output formats with:

$ gdalinfo --formats

For automatic registration of datasets, EOxServer relies on the geospatial
metadata stored with the dataset, notably the EPSG ID of the coordinate
reference system and the geospatial extent. In some cases the CRS information
in the dataset does not contain the EPSG code. If you are using the command
line interfaces of EOxServer you can specify an SRID with the --default-srid
option. As an alternative you can try to add the corresponding information to
the dataset, e.g. with:

$ gdal_translate -a_srs "+init=EPSG:<SRID>" <Input File Name> <Output File Name>

For performance reasons, especially if you are using WMS, you might also
consider to add overviews to the raster data files using the gdaladdo
command (documentation [http://www.gdal.org/gdaladdo.html]). Note however
that this is supported only by a few formats like GeoTIFF and JPEG2000.

Metadata Formats

There are two possible ways to store metadata: the first one is to store it
in the data file itself, the second one is to store it in an accompanying
metadata file.

Only a subset of the supported raster data formats are capable of storing
metadata in the data file. Furthermore there are no standards defining
the semantics of the metadata for generic formats like GeoTIFF. For mission
specific formats, however, there are thorough specifications in place.

EOxServer supports reading basic metadata from ENVISAT N1 files and files that
have a similar metadata structure (e.g. a GeoTIFF file with the same metadata
tags).

For other formats metadata files have to be provided. EOxServer supports two
XML-based formats:

	OGC Earth Observation Profile for Observations and Measurements (OGC 10-157r2)

	an EOxServer native format

Here is an example for EO O&M:

<?xml version="1.0" encoding="ISO-8859-1"?>
<eop:EarthObservation gml:id="eop_ASA_WSM_1PNDPA20050331_075939_000000552036_00035_16121_0775" xmlns:eop="http://www.opengis.net/eop/2.0" xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:om="http://www.opengis.net/om/2.0">
 <om:phenomenonTime>
 <gml:TimePeriod gml:id="phen_time_ASA_WSM_1PNDPA20050331_075939_000000552036_00035_16121_0775">
 <gml:beginPosition>2005-03-31T07:59:36Z</gml:beginPosition>
 <gml:endPosition>2005-03-31T08:00:36Z</gml:endPosition>
 </gml:TimePeriod>
 </om:phenomenonTime>
 <om:resultTime>
 <gml:TimeInstant gml:id="res_time_ASA_WSM_1PNDPA20050331_075939_000000552036_00035_16121_0775">
 <gml:timePosition>2005-03-31T08:00:36Z</gml:timePosition>
 </gml:TimeInstant>
 </om:resultTime>
 <om:procedure />
 <om:observedProperty />
 <om:featureOfInterest>
 <eop:Footprint gml:id="footprint_ASA_WSM_1PNDPA20050331_075939_000000552036_00035_16121_0775">
 <eop:multiExtentOf>
 <gml:MultiSurface gml:id="multisurface_ASA_WSM_1PNDPA20050331_075939_000000552036_00035_16121_0775" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
 <gml:surfaceMember>
 <gml:Polygon gml:id="polygon_ASA_WSM_1PNDPA20050331_075939_000000552036_00035_16121_0775">
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList>-33.03902600 22.30175400 -32.53056000 20.09945700 -31.98492200 17.92562200 -35.16690300 16.72760500 -35.73368300 18.97694800 -36.25910700 21.26212300 -33.03902600 22.30175400</gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </gml:surfaceMember>
 </gml:MultiSurface>
 </eop:multiExtentOf>
 </eop:Footprint>
 </om:featureOfInterest>
 <om:result />
 <eop:metaDataProperty>
 <eop:EarthObservationMetaData>
 <eop:identifier>ASA_WSM_1PNDPA20050331_075939_000000552036_00035_16121_0775</eop:identifier>
 <eop:acquisitionType>NOMINAL</eop:acquisitionType>
 <eop:status>ARCHIVED</eop:status>
 </eop:EarthObservationMetaData>
 </eop:metaDataProperty>
</eop:EarthObservation>

The native format has the following structure:

<Metadata>
 <EOID>some_unique_eoid</EOID>
 <BeginTime>YYYY-MM-DDTHH:MM:SSZ</BeginTime>
 <EndTime>YYYY-MM-DDTHH:MM:SSZ</EndTime>
 <Footprint>
 <Polygon>
 <Exterior>Mandatory - some_pos_list as all-space-delimited Lat Lon pairs (closed polygon i.e. 5 coordinate pairs for a rectangle) in EPSG:4326</Exterior>
 [
 <Interior>Optional - some_pos_list as all-space-delimited Lat Lon pairs (closed polygon) in EPSG:4326</Interior>
 ...
]
 </Polygon>
 </Footprint>
</Metadata>

The automatic registration tools for EOxServer (see below under Command Line Tools)
expect that the metadata file accompanying the data file has the same name with
.xml as extension.

Metadata Preparation

EOxServer provides a tool to extract metadata from ENVISAT N1 files and
convert it to EO O&M format. It can be found under tools/gen_envisat_md.py.
It accepts an input path to an N1 file and stores the resulting XML file under
the same path with the appropriate file name (i.e. replacing the .N1
extension with .xml). Note that EOxServer must be in the Python path and
the environment variable DJANGO_SETTINGS_MODULE must be set and point to
a properly configured EOxServer instance.

Admin Client

The Admin Client is accessible via any standard web browser at the path
/admin under the URL your instance is deployed or simply by following the
admin link on the start page. Deployment provides more
details.

Use the username and password you provided during the syncdb step as
described in the Service Instance Creation and Configuration section.

Creating a custom Range Type

Before registering any data in EOxServer some vital information on the datasets
has to be provided. Detailed information regarding the kind of data stored can
be defined in the Range Type. A Range Type is a collection of bands which
themselves are assigned to a specific Data Type (see Range Types).

A simple standard PNG for example holds 4 bands (RGB + Alpha) each of them able
to store 8 bit data. Therefore the Range Type would have to be defined with four
bands (red, green, blue, alpha) each of them having ‘Byte’ as Data Type.

In our example we use the reduced MERIS RGB data provided in the autotest
instance. gdalinfo provides us with the most important information:

[...]
Band 1 Block=541x5 Type=Byte, ColorInterp=Red
Band 2 Block=541x5 Type=Byte, ColorInterp=Green
Band 3 Block=541x5 Type=Byte, ColorInterp=Blue

In order to define a new Range Type we click on the “Add” button next to the
“Range Types” in the home menu of the admin client. Here we define the name of
the Range Type and add bands to it by clicking on “Add another band”.

For each band in “Name”, “Identifier” and “Description” you can enter the
same content for now. The default “Definition” value for now can be
“http://www.opengis.net/def/property/OGC/0/Radiance”. “UOM” stands for “unit of
measurement” which in our case is radiance defined by the value “W.m-2.Sr-1”.
For displaying the data correctly it is recommended to assign the respective
value in “Color Interpretation”. If your data is distributed in only a portion
of the possible values of its data type it is best to define “Raw value min” and
“Raw value max” to have a better visual representation in e.g WMS. You can add
a Nilvalue set to each of the bands, which is explained in the next section.

With the “index” you can finetune the index of the band within the range type.

[image: ../_images/admin_app_01_add_range_type.png]

To define invalid values of the image, for each band a set of nil values can be
defined. To create one navigate to “/admin/coverages/nilvalueset” and click on
the button “Add Nil Value Set”. Here you can define a name of the set (which you
can later use to set it in the band) and set the nil value(s) definition and
reason. You can also add additional nil values to the set by clicking “Add
another Nil Value”. To add the NilValue set to the band(s), you have to navigate
back to your range type admin page and set the nilvalue set to your band.

[image: ../_images/admin_app_02_add_nilvalue_set.png]

To list, export, and load range types using the command-line tools see
Range Type Handling.

Creating a Dataset

To create a Rectified or Referenceable Dataset from the admin click on either
of the “Add” buttons next to the corresponding dataset type in the home screen.
For both Dataset types the following fields must be set:

	Identifier: a unique identifier for the Dataset

	Range Type

	Size for both X and Y axis

	The bounding box (min x, min y, max x, max y). The bounding box is expressed
in the CRS defined by either “SRID” or “Projection” of which one must be
specified

The following items should be set:

	Begin and end time: if available this should be set to let the various
services allow a temporal search

	Footprint: this should be set as-well to let the various services perform
spatial searches.

To link actual files containing data and metadata to the Dataset, we have to add
Data Items. Each data item has a “location”, a “format” (mime-type) and a
“semantic” (band data, metadata or anything else related).

The “location” is relative to either the “storage” or “package” if available,
otherwise the location is treated a local (relative or absolute) path. A
“Storage” defines a remote service like FTP, HTTP or similar. A package
abstracts archives like TAR or ZIP files. Packages have a location themselves
and can also reside on a storage or be located within another package
themselves.

To add a local 15-bands GeoTIFF and a local metadata XML-file to the Dataset use
the following values:

	Location
	Format
	Semantic

	path/to/data.tiff
	image/tiff
	bands[1:15]

	path/to/metadata.xml
	eogml
	metadata

If the raster-data is distributed among several files you can use several data
items with semantic bands[low:high] where low and high are the 1-based
indices.

You can directly add the dataset to one or multiple collections in the
“EO Object to Collection Relations” section.

[image: ../_images/admin_app_03_add_dataset.png]

Creating a Dataset Series or a Stitched Mosaic

A Dataset Series is a very basic type of collection that can contain Datasets,
Stitched Mosaics and even other Dataset Series. The creation of a dataset series
is fairly simple: In the admin click on “Add Dataset Series”, enter a valid
identifier, add elements (in the “EO Object to Collection Relations” section)
and click on “save”. The metadata (footprint, begin time and end time) are
automatically collected upon the save.

The creation of a Stitched Mosaic is similar to the creation of a Dataset Series
with some restrictions:

	the Range Type, overall size and exact bounding box must be specified
(exactly as with Datasets)

	only Rectified Datasets that lie on the exact same grid can be added

[image: ../_images/admin_app_04_add_dataset_series.png]

Command Line Tools

eoxserver-instance.py

The first important command line tool is used for Service Instance Creation and Configuration
of EOxServer and is explained in the Installation section of this user’
guide.

eoxs_dataset_register

Besides this tool EOxServer adds some custom commands to Django’s manage.py
script. The eoxs_dataset_register command is detailed in the
Data Registration section.

eoxs_dataset_deregister

The eoxs_dataset_deregister command allows the de-registration of existing
datasets (simple coverage types as Rectified and Referenceables datasets only)
from an EOxServer instance including proper unlinking from relevant
container types. The functionality of this command is complementary to the
eoxs_dataset_register command.

It is worth to mention that the de-registration does not remove physical
data stored in the file system or different storage backende. Therefore an
extra effort has to be spent to purge the physical data/meta-data files from
their storage.

To de-register a dataset (coverage) identified by its (Coverage/EO) identifier
the following command shall be invoked:

python manage.py eoxs_dataset_deregister <identifier>

The de-registration command allows convenient de-registration of an arbitrary
number of datasets at the same time:

python manage.py eoxs_dataset_deregister <identifier> [<identifier> ...]

The eoxs_dataset_deregister does not allow the removing of container objects
such as Rectified Stitched Mosaics or Dataset Series.

The eoxs_dataset_deregister command, by default, does not allow the
de-registration of automatic datasets (i.e, datasets registered by the
synchronisation process, see What is synchronization?). Although this restriction
can be overridden by the --force option, it is not recommended to do so.

Updating Datasets

There is currently no way how to update registered EOxServer datasets from the
command line. In case such an action would be needed it is recommended to
de-register the existing dataset first (see eoxs_dataset_deregister
command) and register it again with the updated parameters (see
eoxs_dataset_register command). Special attention should be paid to
linking of the updated dataset to all the container objects during the
registration as this information is removed by the de-registration.

eoxs_collection_create

The eoxs_collection_create command allows the creation of a dataset series
with initial data sources or coverages included. In it’s simplest use case,
only the --identifier parameter is required, which has to be a valid and not
yet taken identifier for the collection. By default a Dataset Series is created.

Range types for datasets can be read from configuration files that are
accompanying them. There can be a configuration file for each dataset or one
that applies to all datasets contained within a directory corresponding to a
data source. Configuration files have the file extension .conf. The file
name is the same as the one of the dataset (so the dataset foo.tiff
needs to be accompanied by foo.conf) or __default__.conf if you want
to use the config file for the whole directory. The syntax for the file is
as follows:

[range_type]
range_type_name=<range type name>

Both approaches may be combine and configuration files produced only for
some of the datasets in a directory and a default range type defined in
__default__.conf. EOxServer will first look up the dataset configuration
file and fall back to the default only if there is no individual .conf
file.

Already registered datasets can be automatically added to the Dataset Series by
using the --add option which takes an identifier of the Dataset or
collection to be added. This option can be used multiple times.

If the collection is intended to be a sub-collection of another collection it
can be inserted via the --collection parameter that also requires the
identifier of the collection. Again, this parameter can be used multiple times.

eoxs_collection_delete

With this command an existing collection can be removed. When the --force
switch is not set, only empty collections can be deleted. With the
--recursive option all sub-collections will be deleted aswell.

This command does never remove any Datasets.

eoxs_collection_link and eoxs_collection_unlink

These two commands insert and remove links between objects and collections. To
insert an object into a collection use the following command:

eoxs_collection_link --add <object-identifier> --collection <collection-identifier>

To do the opposite do the following:

eoxs_collection_unlink --remove <object-identifier> --collection <collection-identifier>

eoxs_collection_purge

To quickly remove the contents of a single collection from the database, the
eoxs_collection_purge command can be used. This command deregisters all
contained datasets of a collection. When the --recursive option is set, all
contained sub-collections are purged aswell.
Using the --delete option, the purged collections themselves are deleted too.

eoxs_collection_datasource

This command allows to add a datasource to a collection. A datasource consists
of a primary source and zero or more secondary templates. The source
should be a path using unix shell regular expressions to match files in the
given directory structure. The templates are similar, but should make use of
template tags that are then replaced the values of the source. Possible tags
are:

	{basename}: the sources file basename (name without directory)

	{root}: like {basename}, but without file extension

	{extension}: the source files extension

	{dirname}: the directory path of the source file

	{source}: the full path of the source file

Example:

python manage.py eoxs_collection_datasource -i MER_FRS_1P \
 -s data/MER_FRS_1P_reduced/*tif \
 -t data/MER_FRS_1P_reduced/{root}.xml

eoxs_collection_synchronize

This command allows to synchronize a collection with the file system using its
datasources.

What is synchronization?

In the context of EOxServer, synchronization is the process of updating the
database models for container objects (such as RectifiedStitchedMosaics or
DatasetSeries) according to changes in the file system.

Automatic datasets are deleted from the database, when their data files cannot
be found in the file system. Similar, new datasets will be created when new
files matching the search pattern in the subscripted directories are found.

When datasets are added to or deleted from a container object, the metadata
(e.g the footprint of the features of interest or the time extent of the image)
of the container is also likely to be adjusted.

Reasons for Synchronization

There are several occasions, where synchronization is necessary:

	A file has been added to a folder associated with a container

	A file from a folder associated with a container has been removed

	EO Metadata has been changed

	A regular check for database consistency

HowTo

Synchronization can be triggered by a custom Django admin command [https://docs.djangoproject.com/en/1.4/ref/django-admin/], called
eoxs_collection_synchronize.

To start the synchronization process, navigate to your instances directory and
type:

python manage.py eoxs_synchronize -i <ID> [-i <ID> ...]

whereas <IDs> are the coverage/EO IDs of the containers that shall be
synchronized.

Alternatively, with the -a or --all option, all container objects in
the database will be synchronized. This option is useful for a daily cron-job,
ensuring the databases consistency with the file system.

python manage.py eoxs_collection_synchronize --all

The synchronization process may take some time, especially when FTP/Rasdaman
storages are used and also depends on the number of synchronized objects.

eoxs_id_check

The eoxs_check_id commands allows checking about status of the queried
coverage/EO identifier. The command returns the status via its return code (0 -
True or 1 - False).

By default the command checks whether an identifier can be used (is available)
as a new Coverage/Collection ID:

python manage.py eoxs_id_check <ID> && echo True || echo False

It is possible to check if the identifier is used for a specific type of object.
For example, the following would check if the identifier is used for a
Dataset Series:

python manage.py eoxs_id_check <ID> --type DatasetSeries && echo True || echo False

Range Type Handling

The eoxs_rangetypes_list command, by default, lists the names of all
registered range types:

python manage.py eoxs_rangetypes_list

In case of more range types details required verbose listing may be requested by
--details option. When one or more range type names are specified the output
will be limited to the specified range-types only:

python manage.py eoxs_rangetypes_list --details [<range-type-name> ...]

The same command can be also used to export rangetype in JSON format
(--json option). Following example prints the selected RGB range type in
JSON format:

python manage.py eoxs_rangetypes_list --json RGB

The output may be directly savaved to file by using the -o option. Following
example saves all the registered range-types to a file named
rangetypes.json:

python manage.py eoxs_rangetypes_list --json -o rangetypes.json

The rangetypes saved in JSON format can be loaded (e.g., by another EOxServer
instance) by using of the eoxs_rangetypes_load command. By default, this
command reads the JSON data from the standard input. To force the command to
read the input from a file use -i

python manage.py eoxs_rangetypes_load -i rangetypes.json

Performance

The performance of different EOxServer tasks and services depends heavily on
the hardware infrastructure and the data to be handled. Tests were made for
two typical operator use cases:

	registering a dataset

	generating a mosaic

The tests for registering datasets were performed on a quad-core machine
with 4 GB of RAM and with a SQLite/SpatiaLite database. The test datasets
were 58 IKONOS multispectral (4-band 16-bit), 58 IKONOS panchromatic (1-band
16-bit) and 58 IKONOS pansharpened (3-band 8-bit) scenes in GeoTIFF format with
file sizes ranging between 60 MB and 1.7 GB. The file size did not have any
discernible impact on the time it took to register. The average registration
took about 61 ms, meaning that registering nearly 1000 datasets per minute is
possible.

The tests for the generation of mosaics were performed on a virtual machine
with one CPU core allocated and 4 GB of RAM. Yet again, the input data were
IKONOS scenes in GeoTIFF format.

	Datasets
	Data Type
	Files
	Input File Size
	Tiles Generated
	Time
	GB per minute

	IKONOS multispectral
	4-band 16-bit
	68
	8.9 GB
	8.819
	10 m
	0.89 GB

	IKONOS panchromatic
	1-band 16-bit
	68
	35.1 GB
	126.750
	1:05 h
	0.54 GB

	IKONOS pansharpened
	3-band 8-bit
	68
	52.7 GB
	126.750
	1:46 h
	0.49 GB

As the results show the file size of the input files has a certain impact on
performance, but the effect seems to level off.

Regarding the performance of the services there are many influence factors:

	the hardware configuration of the machine

	the network connection bandwith

	the database configuration (SQLite or PostGIS)

	the format and size of the raster data files

	the processing steps necessary to fulfill the request (e.g. resampling,
reprojection)

	the coverage type (processing referenceable grid coverages is considerably
more expensive than processing rectified grid coverages)

	the setup of IDM components (if any)

For hints on improving performance of the services see
Hardware Guidelines and Data Preparation and Supported Data Formats.

 The Webclient Interface

The Webclient Interface

Table of Contents

	The Webclient Interface
	Enable the Webclient Interface

	Using the webclient interface

The webclient interface is an application running in the browser and provides a
preview of all Datasets in a specified Dataset Series. It uses an
OpenLayers [http://openlayers.org/] display to show a WMS view of the
datasets within a map context. The background map tiles are provided by
EOX [https://maps.eox.at//].

It can further be used to provide a download mechanism for registered datasets.

Enable the Webclient Interface

To enable the webclient interface, several adjustments have to be made to the
instances settings.py and urls.py.

First off, the eoxserver.webclient has to be inserted in the INSTALLED_APPS
option of your settings.py. As the interface also requires several static
files like style-sheets and script files, the option STATIC_URL has to be set
to a path the webserver is able to serve, for example /static/. The static
media files are located under path/to/eoxserver/webclient/static and can be
collected via the collectstatic command [https://docs.djangoproject.com/en/1.8/ref/contrib/staticfiles/#collectstatic].

To finally enable the webclient, a proper URL scheme has to be set up in
urls.py. The following lines would enable the index and the webclient view
on the URL www.yourdomain.com/client.

urlpatterns = patterns('',
 ...
 url(r'^client/', include("eoxserver.webclient.urls")),
 ...
)

Using the webclient interface

The webclient interface can be accessed via the given URL in urls.py as
described in the instructions above, whereas the URL www.yourdomain.com/client would
open an index view, displaying links to the webclient for every dataset series
registered in the system. To view the webclient for a specific dataset series,
use this URL: www.yourdomain.com/client/<EOID> where <EOID> is the EO-ID of
the dataset series you want to inspect.

[image: ../_images/webclient_autotest.png]
The webclient showing the contents of the autotest instance.

The map can be panned with via mouse dragging or the map-moving buttons in the
upper left of the screen. Alternatively, the arrow keys can be used. The
zoomlevel can be adjusted with the mouse scrolling wheel or the zoom-level
buttons located directly below the pan control buttons.

A click on the small “+” sign on the upper right of the screen reveals the
layer switcher control, where the preview and outline layers of the dataset
series can be switched on or off.

The upper menu allows to switch the visibility of the “Layers”, “Tools” and
“About” panels. The “Layers” panel allows to set the visibility of all the
enabled layers of the instance. This includes all non-empty collections and all
coverages that are visible but not in a collection. Also the background and
the overlay can be altered.

The “Tools” panel allows to draw bounding boxes, manage selections and trigger
the download. In order to download, first at least one bounding box must be
drawn. Afterwards the download icon is clickable.

[image: ../_images/webclient_autotest_download_view.png]
The download selection view.

Upon clicking on the download icon, the download view is shown. It displays all
the coverages available for download that are in the active layers and are
intersecting with the spatio-temporal subsets. There, additional download
options can be made:

	actually selecting coverages for download

	selecting an output format

	selecting an output projection

When all coverages to be downloaded are selected and all configuration is done
a click on “Start Download” triggers the download of each coverage, subcetted by
the given spatial subsets.

The “About” panel shows general info of EOxClient [https://github.com/EOX-A/EOxClient], the software used to build the
webclient.

In the bottom there is the timeslider widget. It is only shown if at least one
layer is active. Like the map, it is “zoomable” (use the mousewheel when the
mouse is over the timeslider) and “pannable” (the bar that contains the actual
dates and times is the handle). It also allows to draw time intervals by
dragging over the upper half of the widget. The upper half is also where
coverages are displayed as colored dots or lines. The color of the dots/lines is
the same as the color of its associated collection, whereas only active
collections are visible on the timeslider. Hollow dots/lines mean that
the coverage is currently not in the maps viewport. By clicking on a dot/line
the map zooms to the coverages extent.

 Identity Management System

Identity Management System

Table of Contents

	Identity Management System
	Installation and Configuration
	Prerequisites

	LDAP Directory

	Authorisation Service
	XACML Policies for the Authorisation Service

	General Configuration for CHARON services

	HTTP and SOAP Specific Components

The Identity Management System (IDMS) provides access control capabilities for
security relevant data. The current IDMS supports EOxServer with a native
security component for HTTP KVP and POST/XML protocol binding as well as
external components for SOAP binding. The system is based on other free and
open software projects, namely the Charon Project [http://www.enviromatics.net/charon/], the Shibboleth
framwork [http://shibboleth.internet2.edu/] and the HMA Authentication
Service [http://wiki.services.eoportal.org/tiki-index.php?page=HMA+Authentication+Service]. In the context of EOxServer, the SOAP support in the
IDMS can be used to provide authentication and authorisation capabilities for
the SOAP Proxy.

The IDMS uses two different schemes for authentication: The native EOxServer
component relies on Shibboleth for Authentication, the SOAP components use the
Charon framework.

The approach chosen for the SOAP part of the IDMS follows the OGC best practice
document User Management Interfaces for Earth Observation Services [http://portal.opengeospatial.org/files/?artifact_id=40677] for the
authentication concept. The authentication part is following the ideas of the
XACML data flow pattern [http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf]: The IDMS authorisation part consists of a Policy
Decision Point (PDP, here represented through the Charon Policy Management And
Authentication Service) and the Policy Enforcement Point (PEP, represented
through the Charon PEP Service). The following figure gives an overview of the
IDMS SOAP part:

[image: ../../_images/IDM_SOAP_Components.png]
IDMS SOAP Access Control Overview

The HMA Authentication Service, or Security Token Service (STS), and the Charon
PEP components were both modified in order to be compatible. This is a result
of the ESA project Open-standard Online Observation Service [http://wiki.services.eoportal.org/tiki-index.php?page=O3S] (O3S). The STS
now also supports SAML 2.0 security tokens, which the PEP components can
interpret and validate. The IDMS supports trust relationships between identity
providers and enforcement components on the basis of certificate stores.

The HTTP or native EOxServer part of the IDMS uses exactly the same scheme for
authorisation as the SOAP part, but uses the Shibboleth federated identity
management system for authentication.

[image: ../../_images/IDM_HTTP_Components1.png]
IDMS EOxServer Access Control Overview

Two requirements must be met to use the IDMS in this case:

	A Shibboleth Identity Provider (IdP) must be available for authentication

	A Shibboleth Service Provider (SP) must be installed and configured in an
Apache HTTP Server [http://httpd.apache.org/] to protect the EOxServer
resource.

A user has to authenticate at an IdP in order to perform requests to an
EOxServer with access control enabled. The IdP issues a SAML token which will
be validated by the SP.

Is the user valid, the SP adds the user attributes received from the IdP to the
HTTP Header of the original service requests and conveys it to the protected
EOxServer instance. The whole process ensures, that only authenticated users
can access the data and services provided by EOxServer. The attributes from
Shibboleth are used by the EOxServer security components to make a
XACMLAuthzDecisionQuery to the Charon Authorisation Service.

Installation and Configuration

The following services are needed both for the HTTP and the SOAP security part:

	Charon Authorisation Service.

	LDAP Directory.

Prerequisites

Download locations for the IDMS components:

	Shibboleth: http://shibboleth.internet2.edu/downloads.html

	CHARON Authorisation Service: http://www.enviromatics.net/charon/ or http://packages.eox.at/idm/

	Security Token Service: http://packages.eox.at/idm/

	PEP Service: http://packages.eox.at/idm/

	EOxServer: http://eoxserver.org/wiki/Download

The following software is needed to run the IDMS:

	A LDAP Directory.

	Java [http://www.oracle.com/technetwork/java/index.html] JDK 6 or higher

	Apache Tomcat [http://tomcat.apache.org/] 6 or higher

	Apache Axis2 [http://axis.apache.org/axis2/java/core/] 1.4.1 or higher

	MySQL [http://dev.mysql.com/downloads/] 5

	Apache HTTP Server [http://httpd.apache.org/] 2.x

The following software is needed to build the IDMS components:

	Java [http://www.oracle.com/technetwork/java/index.html] SDK 6 or higher

	Apache Ant [http://ant.apache.org/] 1.6.2 or higher

	Apache Maven [http://maven.apache.org/] 2 or higher

LDAP Directory

The IDMS uses a LDAP directory to store user data (attributes, passwords, etc).
You can use any directory implementation, supporting the Lightweight Directory
Access Protocol (v3).

Known working implementations are:

	Apache Directory Service [http://directory.apache.org/]

	OpenLDAP [http://openldap.org]

A good graphical client for LDAP directories is the Apache Directory Studio [http://directory.apache.org/studio/].

Authorisation Service

Before installing the Authorsation Service, refer to the General Configuration for CHARON services.

The Authorisation Service is responsible for the authorisation of service
requests. It makes use of XACML [http://www.oasis-open.org/committees/xacml/#XACML20], a XML based language for access policies. The Authorisation
Service is part of the CHAORN [http://www.enviromatics.net/charon/index.html]
project.

The Authorisation Service relies on a MySQL database to store all XACML
policies. So in order to install the Authorisation Service, you first need to
prepare a MySQL database:

	Install the MySQL database on your system.

	Change the root password. You can use the command line for this:

mysqladmin -u root password 'root' -p

	Run the SQL script bundle with the Authorisation Service in order to create
the policy database:

mysql -u root -h localhost -p < PolicyAuthorService.sql

The Service needs the following additional dependencies in the
${AXIS2_HOME}\lib folder:

	mysql-connector-java-5.1.6.jar

	spring-2.5.1.jar

The next step is deploying the Authorisation Service, therefore extract the ZIP
archive into the directory of your ${AXIS2_HOME}.

Now you have to configure the service. All configuration files are in the
${AXIS2_HOME}/WEB-INF/classes folder and its sub-folders.

	Open the PolicyAuthorService.properties and change the axisURL
parameter to the URL URL where you are actually deploying your service.

	You can change the database connection in the config/GeoPDP.xml
configuration file if necessary.

To add new XACML policies to the Authorisation Service, refer to the
XACML Policies for the Authorisation Service.

XACML Policies for the Authorisation Service

As mentioned before, the Charon Authorisation Service uses a MySQL database
to store all XACML policies. The policies are stored in the database
policy_author and the table policy. To add new policies, use an SQL client

INSERT INTO policy(policy) VALUES (' your xacml policy')

An XACML policy usually consists of a policy wide target and and several specific rules.
The three main identifiers are subjects, targets and actions. Subjects (or users) can be
identified through the “asserted user attributes” which are provided by the Shibboleth framework.
The EOxServer security components also provide an attribute REMOTE_ADDR for subjects,
which contains the IP address of the user. The resource is mainly identified through the attribute
urn:oasis:names:tc:xacml:1.0:resource:resource-id, which is the service address of the secured
service in case of an secured SOAP service and the host name or a ID set in the configuration in case of
the EOxServer. The EOxServer also provides the atributes serverName (the host name) and serviceType
(type of the service, i.e. wcs or wms). The action identifies the operation performed on the service, i.e.
getcapabilities or getcoverage. In the following there are two example policies for the EOxServer
WMS and WCS. Please note the comments inline.

A XACML policy to permit a user “wms_user” full accesss to the EOxServer WMS:

<?xml version="1.0" encoding="UTF-8"?>
<Policy
 xsi:schemalocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os http://docs.oasis-open.org/xacml/access_control-xacml-2.0-policy-schema-os.xsd"
 PolicyId="wms_user_policy"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides"
 xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ns="http://www.enviromatics.net/WS/PolicyManagementAndAuthorisationService/types /2.0">

 <Target>
 <Subjects>
 <Subject>
 <!-- Here we specify the user who has access to the service. Default identifier is the uid attribute -->
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">wms_user</AttributeValue>
 <SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="uid"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <Resource>
 <!-- The attribute urn:oasis:names:tc:xacml:1.0:resource:resource-id specifies the protected server (default is the hostname) -->
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">eoxserver.example.com</AttributeValue>
 <ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>
 </ResourceMatch>

 <!-- The attribute serviceType specifies the protected service (wms or wcs) -->
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">wms</AttributeValue>
 <ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="serviceType"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 </Target>

 <!--
 In the following rules we allow the specified user to perform selected operations
 on the service.
 -->

 <!--
 GetCapabilities
 -->

 <Rule RuleId="PermitGetCapabilitiesCC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">GetCapabilities</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <Rule RuleId="PermitGetCapabilitiesSC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">getcapabilities</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <!--
 GetMap
 -->

 <Rule RuleId="GetMapCC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">GetMap</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <Rule RuleId="GetMapSC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">getmap</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <!--
 GetFeatureInfo
 -->

 <Rule RuleId="GetFeatureInfoCC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">GetFeatureInfo</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <Rule RuleId="GetFeatureInfoSC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">getfeatureinfo</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <!--
 DescribeLayer
 -->

 <Rule RuleId="DescribeLayerCC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">DescribeLayer</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <Rule RuleId="DescribeLayerSC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">describelayer</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <!--
 GetLegendGraphic
 -->

 <Rule RuleId="GetLegendGraphicCC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">GetLegendGraphic</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <Rule RuleId="GetLegendGraphicSC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">getlegendgraphic</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <!--
 GetStyles
 -->

 <Rule RuleId="GetStylesCC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">GetStyles</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <Rule RuleId="GetStylesSC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">getstyles</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

</Policy>

A XACML policy to permit a user “wcs_user” full accesss to the EOxServer WCS:

<?xml version="1.0" encoding="UTF-8"?>
<Policy
 xsi:schemalocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os http://docs.oasis-open.org/xacml/access_control-xacml-2.0-policy-schema-os.xsd"
 PolicyId="wcs_user_policy"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides"
 xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ns="http://www.enviromatics.net/WS/PolicyManagementAndAuthorisationService/types /2.0">

 <Target>
 <Subjects>
 <Subject>
 <!-- Here we specify the user who has access to the service. Default identifier is the uid attribute -->
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">wcs_user</AttributeValue>
 <SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="uid"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <Resource>
 <!-- The attribute urn:oasis:names:tc:xacml:1.0:resource:resource-id specifies the protected server (default is the hostname) -->
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">eoxserver.example.com</AttributeValue>
 <ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>
 </ResourceMatch>

 <!-- The attribute serviceType specifies the protected service (wms or wcs) -->
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">wcs</AttributeValue>
 <ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="serviceType"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 </Target>

 <!--
 GetCapabilities
 -->

 <Rule RuleId="PermitGetCapabilitiesCC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">GetCapabilities</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <Rule RuleId="PermitGetCapabilitiesSC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">getcapabilities</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <!--
 DescribeCoverage
 -->

 <Rule RuleId="DescribeCoverageCC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">DescribeCoverage</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <Rule RuleId="DescribeCoverageSC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">describecoverage</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <!--
 GetCoverage
 -->

 <Rule RuleId="DescribeCoverageCC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">GetCoverage</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <Rule RuleId="GetCoverageSC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">getcoverage</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <!--
 DescribeEOCoverageSet
 -->

 <Rule RuleId="DescribeEOCoverageSetCC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">DescribeEOCoverageSet</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

 <Rule RuleId="DescribeEOCoverageSetSC" Effect="Permit">
 <Target>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">describeeocoverageset</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action" DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>

</Policy>

General Configuration for CHARON services

	The Charon services need the acs-xbeans-1.0.jar dependency in the
\lib folder of your Axis2 installation (presumably the webapps/axis2
of your Apache Tomcat installation).

	Furthermore, you have to activate the EIGSecurityHandler in the
Global Modules section of your axis2 configuration
(${AXIS2_HOME}/WEB-INF/conf/axis2.xml).

	You may configure the logging for the services in the Log4J configuration
file (${AXIS2_HOME}/WEB-INF/classes/log4j.properties).

Both, the Security Token Service and the PEP service make use of Java
Keystores: The IDMS uses Keystores to store a) the certificate used by the
Security Token Service for signing SAML tokens and b) the public keys of those
authenticating authorities trusted by the Policy Enforcement Point. The
keytool of the Java distribution can be used to create and manipulate
Java Keystores:

	The following command creates a new Keystore with the password :secret: and
a suitable key pair with the alias :authenticate: for the Security Token
Service:

keytool -genkey -alias authenticate -keyalg RSA -keystore keystore.jks
-storepass secret -validity 360

	The following command exports the public certificate from a key pair
:authenticate: to the file authn.crt:

keytool -export -alias authenticate -file authn.crt -keystore
keystore.jks

	The following command imports a certificate to a Keystore:

keytool -import -alias trusted_sts -file authn.crt -keystore
keystore.jks

You can use the Apache HTTP Server as a proxy, it will enable your services
running in Tomcat to be accessible over the Apache server. This can be useful
when your services have to be accessible over the HTTP standard port 80:

	First you have to enable mod_proxy_ajp and mod_proxy.

	Create a virtual host in your httpd.conf:

<VirtualHost *:80>
 ServerName server.example.com

 <Proxy *>
 AddDefaultCharset Off
 Order deny,allow
 Allow from all
 </Proxy>

 ProxyPass /services/AuthenticationService ajp://localhost:8009/axis2/services/AuthenticationService
 ProxyPassReverse /services/AuthenticationService ajp://localhost:8009/axis2/services/AuthenticationService

</VirtualHost>

	The ProxyPass and ProxyPassReverse directives have to point to your
services. Please note that the Tomcat server hosting your services must have
the AJP interface enabled.

HTTP and SOAP Specific Components

For the installation and configuration please refer to the HTTP or SOAP specific
documentation:

	HTTP Components
	Shibboleth Identity Provider

	Shibboleth Service Provider

	Configure Shibboleth SP and IdP

	Configure the EOxServer Security Components

	SOAP Components
	Security Token Service

	Policy Enforcement Point Service

	SOAP Security Proxy

 HTTP Components

HTTP Components

Table of Contents

	HTTP Components
	Shibboleth Identity Provider

	Shibboleth Service Provider

	Configure Shibboleth SP and IdP

	Configure the EOxServer Security Components
	General Configuration Options

	Adding new Subject attributes to the EOxServer Security Components

The following services are needed for the HTTP security part:

	Charon Authorisation Service

	Shibboleth Service Provider

	Shibboleth Identity Provider

	EOxServer

To install and configure the HTTP secuirty components, you have to follow these
steps:

	Install the Charon Authorisation Service.

	Install the Shibboleth Identity Provider.

	Install the Shibboleth Service Provider.

	Follow the documentation of section Configure Shibboleth SP and IdP.

	Follow the documentation of section Configure the EOxServer Security Components.

Shibboleth Identity Provider

The Shibboleth IdP is implemented as an Java Servlet, thus it needs an
installed Servlet container. The Shibboleth project offers an installation
manual for the Shibboleth IdP on their website [https://wiki.shibboleth.net/confluence/display/SHIB2/IdPInstall]. This documentation will provide help
for the basic configuration to get the authentication process working with your
EOxServer instance and also the installation process for the use with Tomcat
and Apache HTTPD. Before you begin with your installation, set up your Tomcat
servlet container and install and configure an LDAP service.

Important URLs for your Shibboleth IDP:

	Status message: https://${IDPHOST}/idp/profile/Status

	Information page: https://${IDPHOST}/idp/status

	Metadata: https://${IDPHOST}/idp/profile/Metadata/SAML

Warning: IdP resource paths are case sensitive!

	Download [http://shibboleth.internet2.edu/downloads.html] the IdP and
unzip the archive.

	Run either ./install.sh (on Linxu/Unix systems) or install.bat (on Windows
systems).

	Follow the on-screen instructions of the script.

Your ${IDP_HOME} directory contains the following directories:

	bin: This directory contains various tools useful in running, testing,
or deploying the IdP

	conf: This directory contains all the configuration files for the IdP

	credentials: This is were the IdP’s signing and encryption credential,
called idp.key and idp.crt, is stored

	lib: This directory contains various code libraries used by the tools in
bin/

	logs: This directory contains the log files for the IdP . Don’t forget
to make this writeable for your Tomcat server!

	metadata: This is the directory in which the IdP will store its metadata,
in a file called idp-metadata.xml. It is recommend you store any other
retrieved metadata here as well.

	war: This contains the web application archive (war) file that you will
deploy into the servlet container

The next step is to deploy the IdP into your Tomcat:

	Increase the memory reserved for Tomcat. Recommended values are
-Xmx512m -XX:MaxPermSize=128m.

	Add the libraries endorsed by the Shibboleth project to your endorsed Tomcat
directories: -Djava.endorsed.dirs=${IDP_HOME}/lib/endorsed/

	Create a new XML document idp.xml in ${TOMCAT_HOME}/conf/Catalina/
localhost/.

	Insert the following content:

<Context docBase="${IDP_HOME}/war/idp.war"
 privileged="true"
 antiResourceLocking="false"
 antiJARLocking="false"
 unpackWAR="false"
 swallowOutput="true" />

	Dont’t forget to replace ${IDP_HOME} with the appropriate path.

To use the Apache HTTP server as an proxy for your IdP, you have to generate a
certificate and a key file for SSL/TLS first.

	Generate a private key:

openssl genrsa -des3 -out server.key 1024

	Generate a CSR (Certificate Signing Request):

openssl req -new -key server.key -out server.csr

	Make a copy from the the original server key:

cp server.key copy_of_server.key

	Remove the Passphrase from your Key:

openssl rsa -in copy_of_server.key -out server.key

	Generating a Self-Signed Certificate:

openssl x509 -req -days 365 -in server.csr -signkey server.key -out
server.crt

The next step is to configure your Apache HTTP Server:

	First you have to enable mod_proxy_ajp, mod_proxy and mod_ssl.

	Create a new configuration file for your SSL hosts (for example
ssl_hosts.conf).

	Add a new virtual host in your new hosts file. Please note the comments in
the virtual host configuration.

<VirtualHost _default_:443>

 # Set appropriate document root here
 DocumentRoot "/var/www/"

 # Set your designated IDP host here
 ServerName ${IDP_HOST}

 # Set your designated logging directory here
 ErrorLog logs/ssl_error_log
 TransferLog logs/ssl_access_log
 LogLevel warn

 SSLEngine on

 SSLProtocol all -SSLv2

 # Important: mod_ssl should not verify the provided certificates
 SSLVerifyClient optional_no_ca

 SSLCipherSuite ALL:!ADH:!EXPORT:!SSLv2:RC4+RSA:+HIGH:+MEDIUM:+LOW

 # Set the correct paths to your certificate and key here
 SSLCertificateFile ${IDP_HOST_CERTIFICATE}
 SSLCertificateKeyFile ${IDP_HOST_CERTIFICATE_KEY}

 <Files ~ "\.(cgi|shtml|phtml|php3?)$">
 SSLOptions +StdEnvVars
 </Files>
 <Directory "/var/www/cgi-bin">
 SSLOptions +StdEnvVars
 </Directory>

 # AJP Proxy to your IDP servlet
 ProxyPass /idp/ ajp://localhost:8009/idp/
 ProxyPassReverse /idp ajp://localhost:8009/idp

 SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown downgrade-1.0 force-response-1.0

 CustomLog logs/ssl_request_log "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"

</VirtualHost>

	Restart your HTTP server.

The next step is to configure our IdP Service with an LDAP service. Please keep
in mind that this documentation can only give a small insight into all
configuration possibilities of Shibboleth.

Open the handler.xml

	Add a new LoginHandler

<LoginHandler xsi:type="UsernamePassword"
 jaasConfigurationLocation="file://${IDP_HOME}/conf/login.config">
 <AuthenticationMethod>urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport</AuthenticationMethod>
</LoginHandler>

	Remove (or comment out) the LoginHandler element of type RemoteUser.

Open the login.config and comment out or delete the other entries that
might exist. Add your own LDAP configuration:

ShibUserPassAuth {
 edu.vt.middleware.ldap.jaas.LdapLoginModule required
 host="${LDAP_HOST}"
 port="${LDAP_PORT}"
 serviceUser="${LDAP_ADMIN}"
 serviceCredential="${LDAP_ADMIN_PASSWORD}"
 base="${LDAP_USER_BASE}"
 ssl="false"
 userField="uid"
 subtreeSearch="true";
};

Enable your LDAP directory as attribute provider:

	Open the attribute-resolver.xml.

	Add your LDAP:

<resolver:DataConnector id="localLDAP" xsi:type="LDAPDirectory"
 xmlns="urn:mace:shibboleth:2.0:resolver:dc" ldapURL="ldap://${LDAP_HOST}:${LDAP_PORT}"
 baseDN="${LDAP_USER_BASE}" principal="${LDAP_ADMIN}"
 principalCredential="${LDAP_ADMIN_PASSWORD}">
<FilterTemplate>
 <![CDATA[
 (uid=$requestContext.principalName)
]]>
</FilterTemplate>
</resolver:DataConnector>

	Configure the IdP to retrieve the attributes by adding new attribute
definitions:

<resolver:AttributeDefinition id="transientId" xsi:type="ad:TransientId">
 <resolver:AttributeEncoder xsi:type="enc:SAML1StringNameIdentifier"
 nameFormat="urn:mace:shibboleth:1.0:nameIdentifier"/>
 <resolver:AttributeEncoder xsi:type="enc:SAML2StringNameID"
 nameFormat="urn:oasis:names:tc:SAML:2.0:nameid-format:transient"/>
</resolver:AttributeDefinition>

<resolver:AttributeDefinition id="displayName" xsi:type="Simple"
 xmlns="urn:mace:shibboleth:2.0:resolver:ad" sourceAttributeID="displayName">
 <resolver:Dependency ref="localLDAP"/>
 <resolver:AttributeEncoder xsi:type="SAML1String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder"
 name="urn:mace:dir:attribute-def:displayName"/>
 <resolver:AttributeEncoder xsi:type="SAML2String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder"
 name="urn:oid:2.16.840.1.113730.3.1.241" friendlyName="displayName"/>
</resolver:AttributeDefinition>

<resolver:AttributeDefinition id="givenName" xsi:type="Simple"
 xmlns="urn:mace:shibboleth:2.0:resolver:ad" sourceAttributeID="givenName">
 <resolver:Dependency ref="localLDAP"/>
 <resolver:AttributeEncoder xsi:type="SAML1String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder"
 name="urn:mace:dir:attribute-def:givenName"/>
 <resolver:AttributeEncoder xsi:type="SAML2String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder" name="urn:oid:2.5.4.42"
 friendlyName="givenName"/>
</resolver:AttributeDefinition>

<resolver:AttributeDefinition id="description" xsi:type="Simple"
 xmlns="urn:mace:shibboleth:2.0:resolver:ad" sourceAttributeID="description">
 <resolver:Dependency ref="localLDAP"/>
 <resolver:AttributeEncoder xsi:type="SAML1String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder"
 name="urn:mace:dir:attribute-def:description"/>
 <resolver:AttributeEncoder xsi:type="SAML2String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder" name="urn:oid:2.5.4.13"
 friendlyName="description"/>
</resolver:AttributeDefinition>

<resolver:AttributeDefinition id="cn" xsi:type="Simple"
 xmlns="urn:mace:shibboleth:2.0:resolver:ad" sourceAttributeID="cn">
 <resolver:Dependency ref="localLDAP"/>
 <resolver:AttributeEncoder xsi:type="SAML1String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder" name="urn:mace:dir:attribute-def:cn"/>
 <resolver:AttributeEncoder xsi:type="SAML2String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder" name="urn:oid:2.5.4.3"
 friendlyName="cn"/>
</resolver:AttributeDefinition>

<resolver:AttributeDefinition id="sn" xsi:type="Simple"
 xmlns="urn:mace:shibboleth:2.0:resolver:ad" sourceAttributeID="sn">
 <resolver:Dependency ref="localLDAP"/>
 <resolver:AttributeEncoder xsi:type="SAML1String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder" name="urn:mace:dir:attribute-def:sn"/>
 <resolver:AttributeEncoder xsi:type="SAML2String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder" name="urn:oid:2.5.4.4"
 friendlyName="sn"/>
</resolver:AttributeDefinition>

<resolver:AttributeDefinition id="uid" xsi:type="Simple"
 xmlns="urn:mace:shibboleth:2.0:resolver:ad" sourceAttributeID="uid">
 <resolver:Dependency ref="localLDAP"/>
 <resolver:AttributeEncoder xsi:type="SAML1String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder" name="urn:mace:dir:attribute-def:uid"/>
 <resolver:AttributeEncoder xsi:type="SAML2String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder" name="urn:oid:2.5.4.45"
 friendlyName="uid"/>
</resolver:AttributeDefinition>

Add the new attributes to your attribute-filter.xml by adding a new
AttributeFilterPolicy:

<afp:AttributeFilterPolicy id="attribFilter">
 <afp:PolicyRequirementRule xsi:type="basic:ANY"/>

 <afp:AttributeRule attributeID="givenName">
 <afp:PermitValueRule xsi:type="basic:ANY"/>
 </afp:AttributeRule>

 <afp:AttributeRule attributeID="displayName">
 <afp:PermitValueRule xsi:type="basic:ANY"/>
 </afp:AttributeRule>

 <afp:AttributeRule attributeID="description">
 <afp:PermitValueRule xsi:type="basic:ANY"/>
 </afp:AttributeRule>

 <afp:AttributeRule attributeID="cn">
 <afp:PermitValueRule xsi:type="basic:ANY"/>
 </afp:AttributeRule>

 <afp:AttributeRule attributeID="sn">
 <afp:PermitValueRule xsi:type="basic:ANY"/>
 </afp:AttributeRule>

 <afp:AttributeRule attributeID="uid">
 <afp:PermitValueRule xsi:type="basic:ANY"/>
 </afp:AttributeRule>

</afp:AttributeFilterPolicy>

Now you have to check if the generated metadata is correct. To do this, open
the idp-metadata.xml file. Known issues are:

	Incorrect ports: For example port 8443 at the AttributeService Bindings
instead of no specific port.

	Wrong X509Certificate for Attribute Resolver. Use your previously generated
SSL/TLS ${IDP_HOST_CERTIFICATE} instead.

After this, restart your Shibboleth IdP.

Shibboleth Service Provider

The installation procedure for the Shibboleth SP is different for all
supported Operating Systems. The project describes the different installation
methods in an own installation manual [https://wiki.shibboleth.net/confluence/display/SHIB2/Installation]. This documentation will provide help for the
basic configuration to get the authentication process working with your
EOxServer instance.

Important URLs for your Shibboleth SP:

	Status page: https://${SPHOST}/Shibboleth.sso/Status

	Metadata: https://${SPHOST}/Shibboleth.sso/Metadata

	Session summary: https://${SPHOST}/Shibboleth.sso/Session

	Local logout: https://${SPHOST}/Shibboleth.sso/Logout

Warning: SP resource paths are case sensitive!

STEP 1

The Shibboleth SP has two relevant configuration files. We begin with the
attribute-map.xml file, where we configure the mapping of the attributes
received from the IdP to the secured service (in our case the EOxServer):

<Attributes xmlns="urn:mace:shibboleth:2.0:attribute-map" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <!-- First some useful eduPerson attributes that many sites might use. -->

 <Attribute name="urn:mace:dir:attribute-def:eduPersonPrincipalName" id="eppn">
 <AttributeDecoder xsi:type="ScopedAttributeDecoder"/>
 </Attribute>
 <Attribute name="urn:oid:1.3.6.1.4.1.5923.1.1.1.6" id="eppn">
 <AttributeDecoder xsi:type="ScopedAttributeDecoder"/>
 </Attribute>

 <Attribute name="urn:mace:dir:attribute-def:eduPersonScopedAffiliation" id="affiliation">
 <AttributeDecoder xsi:type="ScopedAttributeDecoder" caseSensitive="false"/>
 </Attribute>
 <Attribute name="urn:oid:1.3.6.1.4.1.5923.1.1.1.9" id="affiliation">
 <AttributeDecoder xsi:type="ScopedAttributeDecoder" caseSensitive="false"/>
 </Attribute>

 <Attribute name="urn:mace:dir:attribute-def:eduPersonAffiliation" id="unscoped-affiliation">
 <AttributeDecoder xsi:type="StringAttributeDecoder" caseSensitive="false"/>
 </Attribute>
 <Attribute name="urn:oid:1.3.6.1.4.1.5923.1.1.1.1" id="unscoped-affiliation">
 <AttributeDecoder xsi:type="StringAttributeDecoder" caseSensitive="false"/>
 </Attribute>

 <Attribute name="urn:mace:dir:attribute-def:eduPersonEntitlement" id="entitlement"/>
 <Attribute name="urn:oid:1.3.6.1.4.1.5923.1.1.1.7" id="entitlement"/>

 <!-- A persistent id attribute that supports personalized anonymous access. -->

 <!-- First, the deprecated/incorrect version, decoded as a scoped string: -->
 <Attribute name="urn:mace:dir:attribute-def:eduPersonTargetedID" id="targeted-id">
 <AttributeDecoder xsi:type="ScopedAttributeDecoder"/>
 <!-- <AttributeDecoder xsi:type="NameIDFromScopedAttributeDecoder" formatter="$NameQualifier!$SPNameQualifier!$Name" defaultQualifiers="true"/> -->
 </Attribute>

 <!-- Second, an alternate decoder that will decode the incorrect form into the newer form. -->
 <!--
 <Attribute name="urn:mace:dir:attribute-def:eduPersonTargetedID" id="persistent-id">
 <AttributeDecoder xsi:type="NameIDFromScopedAttributeDecoder" formatter="$NameQualifier!$SPNameQualifier!$Name" defaultQualifiers="true"/>
 </Attribute>
 -->

 <!-- Third, the new version (note the OID-style name): -->
 <Attribute name="urn:oid:1.3.6.1.4.1.5923.1.1.1.10" id="persistent-id">
 <AttributeDecoder xsi:type="NameIDAttributeDecoder" formatter="$NameQualifier!$SPNameQualifier!$Name" defaultQualifiers="true"/>
 </Attribute>

 <!-- Fourth, the SAML 2.0 NameID Format: -->
 <Attribute name="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent" id="persistent-id">
 <AttributeDecoder xsi:type="NameIDAttributeDecoder" formatter="$NameQualifier!$SPNameQualifier!$Name" defaultQualifiers="true"/>
 </Attribute>

 <!--Examples of LDAP-based attributes, uncomment to use these... -->
 <Attribute name="urn:mace:dir:attribute-def:cn" id="cn"/>
 <Attribute name="urn:mace:dir:attribute-def:sn" id="sn"/>
 <Attribute name="urn:mace:dir:attribute-def:givenName" id="givenName"/>
 <Attribute name="urn:mace:dir:attribute-def:mail" id="mail"/>
 <Attribute name="urn:mace:dir:attribute-def:telephoneNumber" id="telephoneNumber"/>
 <Attribute name="urn:mace:dir:attribute-def:title" id="title"/>
 <Attribute name="urn:mace:dir:attribute-def:initials" id="initials"/>
 <Attribute name="urn:mace:dir:attribute-def:description" id="description"/>
 <Attribute name="urn:mace:dir:attribute-def:carLicense" id="carLicense"/>
 <Attribute name="urn:mace:dir:attribute-def:departmentNumber" id="departmentNumber"/>
 <Attribute name="urn:mace:dir:attribute-def:displayName" id="displayName"/>
 <Attribute name="urn:mace:dir:attribute-def:employeeNumber" id="employeeNumber"/>
 <Attribute name="urn:mace:dir:attribute-def:employeeType" id="employeeType"/>
 <Attribute name="urn:mace:dir:attribute-def:preferredLanguage" id="preferredLanguage"/>
 <Attribute name="urn:mace:dir:attribute-def:manager" id="manager"/>
 <Attribute name="urn:mace:dir:attribute-def:seeAlso" id="seeAlso"/>
 <Attribute name="urn:mace:dir:attribute-def:facsimileTelephoneNumber" id="facsimileTelephoneNumber"/>
 <Attribute name="urn:mace:dir:attribute-def:street" id="street"/>
 <Attribute name="urn:mace:dir:attribute-def:postOfficeBox" id="postOfficeBox"/>
 <Attribute name="urn:mace:dir:attribute-def:postalCode" id="postalCode"/>
 <Attribute name="urn:mace:dir:attribute-def:st" id="st"/>
 <Attribute name="urn:mace:dir:attribute-def:l" id="l"/>
 <Attribute name="urn:mace:dir:attribute-def:o" id="o"/>
 <Attribute name="urn:mace:dir:attribute-def:ou" id="ou"/>
 <Attribute name="urn:mace:dir:attribute-def:businessCategory" id="businessCategory"/>
 <Attribute name="urn:mace:dir:attribute-def:physicalDeliveryOfficeName" id="physicalDeliveryOfficeName"/>

 <Attribute name="urn:oid:2.5.4.3" id="cn"/>
 <Attribute name="urn:oid:2.5.4.4" id="sn"/>
 <Attribute name="urn:oid:2.5.4.42" id="givenName"/>
 <Attribute name="urn:oid:0.9.2342.19200300.100.1.3" id="mail"/>
 <Attribute name="urn:oid:2.5.4.20" id="telephoneNumber"/>
 <Attribute name="urn:oid:2.5.4.12" id="title"/>
 <Attribute name="urn:oid:2.5.4.43" id="initials"/>
 <Attribute name="urn:oid:2.5.4.13" id="description"/>
 <Attribute name="urn:oid:2.16.840.1.113730.3.1.1" id="carLicense"/>
 <Attribute name="urn:oid:2.16.840.1.113730.3.1.2" id="departmentNumber"/>
 <Attribute name="urn:oid:2.16.840.1.113730.3.1.3" id="employeeNumber"/>
 <Attribute name="urn:oid:2.16.840.1.113730.3.1.4" id="employeeType"/>
 <Attribute name="urn:oid:2.16.840.1.113730.3.1.39" id="preferredLanguage"/>
 <Attribute name="urn:oid:2.16.840.1.113730.3.1.241" id="displayName"/>
 <Attribute name="urn:oid:0.9.2342.19200300.100.1.10" id="manager"/>
 <Attribute name="urn:oid:2.5.4.34" id="seeAlso"/>
 <Attribute name="urn:oid:2.5.4.23" id="facsimileTelephoneNumber"/>
 <Attribute name="urn:oid:2.5.4.9" id="street"/>
 <Attribute name="urn:oid:2.5.4.18" id="postOfficeBox"/>
 <Attribute name="urn:oid:2.5.4.17" id="postalCode"/>
 <Attribute name="urn:oid:2.5.4.8" id="st"/>
 <Attribute name="urn:oid:2.5.4.7" id="l"/>
 <Attribute name="urn:oid:2.5.4.10" id="o"/>
 <Attribute name="urn:oid:2.5.4.11" id="ou"/>
 <Attribute name="urn:oid:2.5.4.15" id="businessCategory"/>
 <Attribute name="urn:oid:2.5.4.19" id="physicalDeliveryOfficeName"/>

 <Attribute name="urn:oid:2.5.4.45" id="uid"/>
</Attributes>

The next step is to edit the shibboleth2.xml file: Locate the element
ApplicationDefaults and set the value of the attribute entityID to
${SP_HOST}\Shibboleth.

STEP 2

The next step is to configure your Apache HTTP Server. To do this, you have to
generate a certificate and a key file for your SSL/TLS Shibboleth SP Host first
(see Shibboleth IdP section). Then add a virtual host to your Apache HTTP
Server:

 <VirtualHost _default_:443>

 # Include the apache22.conf from Shibboleth
 include ${SP_HOME}/apache22.config

 # Set appropriate document root here
 DocumentRoot "/var/www/"

 # Set your designated IDP host here
 ServerName ${IDP_HOST}

 # Set your designated logging directory here
 ErrorLog logs/ssl_error_log
 TransferLog logs/ssl_access_log
 LogLevel warn

 SSLEngine on

 SSLProtocol all -SSLv2

 # Important: mod_ssl should not verify the provided certificates
 SSLVerifyClient optional_no_ca

 SSLCipherSuite ALL:!ADH:!EXPORT:!SSLv2:RC4+RSA:+HIGH:+MEDIUM:+LOW

 # Set the correct paths to your certificate and key here
 SSLCertificateFile ${SP_HOST_CERTIFICATE}
 SSLCertificateKeyFile ${SP_HOST_CERTIFICATE_KEY}

 <Files ~ "\.(cgi|shtml|phtml|php3?)$">
 SSLOptions +StdEnvVars
 </Files>
 <Directory "/var/www/cgi-bin">
 SSLOptions +StdEnvVars
 </Directory>

 SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown downgrade-1.0 force-response-1.0

 CustomLog logs/ssl_request_log "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"

</VirtualHost>

STEP 3

Open shibboleth2.xml and change the entityID in the element
ApplicationDefaults to your ${SP_HOST}. Restart your SP and try to access
your SP Metadata https://${SPHOST}/Shibboleth.sso/Metadata

Configure Shibboleth SP and IdP

	Download SP Metadata and store it locally as ${SP_METADATA_FILE}.

	Open the relying-party.xml of the Shibboleth IdP and change the Metadata
Provider entry to

<!-- MetadataProvider the combining other MetadataProviders -->
<metadata:MetadataProvider id="ShibbolethMetadata" xsi:type="metadata:ChainingMetadataProvider">

 <metadata:MetadataProvider id="IdPMD" xsi:type="metadata:ResourceBackedMetadataProvider">
 <!-- This is usually set correctly by the IdP installation script -->
 <metadata:MetadataResource xsi:type="resource:FilesystemResource"
 file="${IDP_METADATA_FILE}"/>
 </metadata:MetadataProvider>

 <!-- This is the new MetadataProvider for your SP metadata -->
 <MetadataProvider id="URLMD" xsi:type="FilesystemMetadataProvider"
 xmlns="urn:mace:shibboleth:2.0:metadata"
 metadataFile="${SP_METADATA_FILE}">

 <MetadataFilter xsi:type="ChainingFilter" xmlns="urn:mace:shibboleth:2.0:metadata">
 <MetadataFilter xsi:type="EntityRoleWhiteList"
 xmlns="urn:mace:shibboleth:2.0:metadata">
 <RetainedRole>samlmd:SPSSODescriptor</RetainedRole>
 </MetadataFilter>
 </MetadataFilter>

 </MetadataProvider>

</metadata:MetadataProvider>

	Add the ${SP_HOST_CERTIFICATE} to your Java Keystore:

keytool -import -file ${SP_HOST_CERTIFICATE} -alias ${SP_HOST} -keystore ${JAVA_JRE_HOME}\lib\security\cacerts

	Open shibboleth2.xml of your Shibboleth SP add a new SessionInitiator to
the Sessions element:

<!-- Default example directs to a specific IdP's SSO service (favoring SAML 2 over Shib 1). -->
<SessionInitiator type="Chaining" Location="/Login"
 isDefault="true" id="Intranet" relayState="cookie"
 entityID="https://{IDP_HOST}/idp/shibboleth">
 <SessionInitiator type="SAML2" acsIndex="1"
 template="bindingTemplate.html"/>
 <SessionInitiator type="Shib1" acsIndex="5"/>
</SessionInitiator>

	Then add a new MetadataProvider:

<!-- Chains together all your metadata sources. -->
<MetadataProvider type="Chaining">
 <MetadataProvider type="XML"
 uri="https://{IDP_HOST}/idp/profile/Metadata/SAML"
 backingFilePath="federation-metadata.xml"
 reloadInterval="7200">
 </MetadataProvider>
</MetadataProvider>

Alternatively you can reference the metadata from your local IdP:

<!-- Chains together all your metadata sources. -->
<MetadataProvider type="Chaining">
 <MetadataProvider type="XML"
 path="${IDP_HOME}/metadata/idp-metadata.xml"
 </MetadataProvider>
</MetadataProvider>

	Restart your IdP, the SP and the Apache HTTPD

Configure the EOxServer Security Components

This section describes the configuration of the EOxServer security components.

General Configuration Options

The configuration of the EOxServer security components is done in the
eoxserver.conf configuration file of your EOxServer instance. All security
related configuration is done in the section [services.auth.base]:

	pdp_type: Determines the Policy Decision Point type; defaults to none
which deactivates authorisation. Currently, only the type charonpdp is
implemented.

	authz_service: The URL of the Authorisation Service.

	attribute_mapping: The file path to a dictionary with a mapping from
identity attributes received from the Shibboleth IdP to a
XACMLAuthzDecisionQuery. If the key is set to default, a standard
dictionary is used.

	serviceID: Identifier for the EOxServer instance to an external
Authorisation Service. Is used as resource ID in an XACMLAuthzDecisionQuery.
If the key is set to default, the host name will be used.

	allowLocal: If set to True, the security components will alloways allow
access to requests from the local machine. Use with care!

Adding new Subject attributes to the EOxServer Security Components

In order to register new Subject attributes from your LDAP to the IDMS, you
have to configure the Shibboleth IdP, the Shibboleth SP, and the EOxServer.
Let’s assume we want to add the new attribute foo.

Shibboleth IdP

Add a new AttributeResolver to your attribute-resolver.xml configuration
file:

<resolver:AttributeDefinition id="foo" xsi:type="Simple"
 xmlns="urn:mace:shibboleth:2.0:resolver:ad" sourceAttributeID="description">
 <resolver:Dependency ref="localLDAP"/>
 <resolver:AttributeEncoder xsi:type="SAML1String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder"
 name="urn:mace:dir:attribute-def:description"/>
 <resolver:AttributeEncoder xsi:type="SAML2String"
 xmlns="urn:mace:shibboleth:2.0:attribute:encoder" name="foo"
 friendlyName="foo"/>
</resolver:AttributeDefinition>

Add or extend a AttributeFilterPolicy in your attribute-filter.xml
configuration file:

<afp:AttributeFilterPolicy id="fooFilter">
 <afp:PolicyRequirementRule xsi:type="basic:ANY"/>

 <afp:AttributeRule attributeID="foo">
 <afp:PermitValueRule xsi:type="basic:ANY"/>
 </afp:AttributeRule>

</afp:AttributeFilterPolicy>

Shibboleth SP

Add the new attribute to the attribute-map.xml

<Attribute name="foo" id="foo"/>

EOxServer

	Make a copy of the default attribute dictionary
({$EOXSERVER_CODE_DIRECTORY)/conf/defaultAttributeDictionary).

	Add the attribute:

foo=foo

	Register the new dictionary in the EOxServer configuration.

 SOAP Components

SOAP Components

Table of Contents

	SOAP Components
	Security Token Service

	Policy Enforcement Point Service

	SOAP Security Proxy
	Generating the Proxy

	Installing the Proxy

The following services are needed for the SOAP security part:
The following services are needed for the SOAP security part:

	Security Token Service

	Charon Authorisation Service

	Policy Enforcement Point Service

	SOAP Security Proxy

To install and configure the HTTP secuirty components, you have to follow these
steps:

	Install the Charon Authorisation Service.

	Install the Security Token Service.

	Install the Policy Enforcement Point Service.

	Install the SOAP Security Proxy.

Security Token Service

The Security Token Service (STS) is responsible for the authentication of users
and is documented and specified in the OASIS WS-Trust [http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html]
specification. The authentication assertion produced by the STS is formulated
in the Security Assertion Markup Language [http://www.oasis-open.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf]. A client trying to access a
service secured by the IDMS has to embed this assertion in every service
request.

The STS implementation used by the IDMS is the HMA Authentication Service [http://wiki.services.eoportal.org/tiki-index.php?page=HMA+Authentication+Service]. Please refer to the documentation included in the \docs folder
of the HMA Authentication Service package how to compile the service. This
document will only deal on how to install the service. To deploy the service
successfully, you first have to install and configure an LDAP service. Then
proceed with the following steps:

	Put the authentication_v2.1.aar folder in the
${AXIS2_HOME}/WEB-INF/services/ folder. The authentication_v2.1.aar
folder contains all configuration files for the STS.

	The main configuration of the service takes place in the
authentication-service.properties.

	Using the saml-ldap-attributes-mapping.properties, you can map your LDAP
attributes to SAML attributes if necessary.

	You may configure the logging behaviour in the Log4J configuration file in
authentication-service-log4j.properties.

Following properties can be set in the authentication-service.properties
configuration file:

	LDAPURL

	URL to the LDAP service.

	LDAPSearchContext

	Search context for users.

	LDAPPrincipal

	The “user name” used by the STS to access the LDAP service.

	LDAPCredentials

	The password used in combination with LDAPPrincipal

	KEYSTORE_LOCATION

	Path to the Keystore file containing the certificate used for signing the
SAML tokens.

	KEYSTORE_PASSWORD

	The keystore password.

	AUTHENTICATION_CERTIFICATE_ALIAS

	Alias of the keystore entry wich is used for signing the SAML tokens.

	AUTHENTICATION_CERTIFICATE_PASSWORD

	Password corresponding to the AUTHENTICATION_CERTIFICATE_ALIAS

	CLIENT_CERTIFICATE_ALIASES

	Comma serperated list with keystore aliases of trusted clients.

	SAML_TOKEN_EXPIRY_PERIOD

	Defines how long a SAML token is valid.

	SAML_ASSERTION_ISSUER

	SAML Token issure.

	SAML_ASSERTION_ID_PREFIX

	SAML Token prefix.

	SAML_ASSERTION_NODE_NAMESPACE

	Namespace for attribute assertions.

	ENCRYTION_ENABLE

	Enables or disables encryption of SAML tokens.

	INCLUDE_CERTIFICATE

	Enables or disables inclusion of SAML tokens.

	LOG4J_CONFIG_LOCATION

	Path to the Log4J configuration file.

Policy Enforcement Point Service

Before installing the Policy Enforcement Point Service, refer to the
General Configuration for CHARON services.

The Policy Enforcement Point enforces the authorisation decisions made by the
Authorisation Service.

The next step is deploying the PEP Service, therefore extract the ZIP archive
into the directory of your ${AXIS2_HOME}.

Now you have to configure the service. The configuration files are in the
${AXIS2_HOME}/WEB-INF/classes folder. Open the PEPConfiguration.xml to
configure the service. The configuration file already contains documentation of
the single elements.

SOAP Security Proxy

Before installing the SOAP Security Proxy, refer to the General Configuration for CHARON services.
If you want to secure a Web Coverage Service, you can use the provided WCS Security
Proxy. In this case, jump to Installing the Proxy.

Generating the Proxy

The SOAP Proxy is used as a proxy for a secured service. This means a user
client does not communicate directly with a secured service, instead it sends
all requests to the proxy service.

First, you have to generate the proxy service. In order to do this, open a
shell and navigate to the ${ProxyCodeGen_HOME}/bin directory. Run the
script to generate the proxy service:

	Linux, Unices:

./ProxyGen.sh -wsdl path/to/wsdl

	Windows:

.\ProxyGen.bat -wsdl path\to\wsdl

The parameter -wsdl points to a file with the WSDL of the secured service.

After a successful service generation, the folder ${ProxyCodeGen_HOME}/tmp/
dist contains the new proxy service.

Installing the Proxy

Take the service zip and deploy it by unpacking its content to the ${AXIS2_HOME}
folder. For MTOM support, please make sure that the parameter enableMTOM in
the file ${AXIS2_HOME}/axis2.xml is enabled.

Edit the ProxyConfiguration_${SERVICE_NAME}.xml to configure the service.
The configuration file already contains documentation of the single elements.

 SOAP Proxy

SOAP Proxy

Table of Contents

	SOAP Proxy
	SOAP Access to WCS

	Installation
	Quick installation guide for EOxServer on CentOS

	Old installation guide without rpms

SOAP Access to WCS

SOAP access to services provided by EOxServer is possible if the functionality
is installed by the service provider. The protocol is SOAP 1.2 over HTTP.

EOxServer responds to the following WCS-EO requests via its SOAP service interface:

	DescribeCoverage

	DescribeEOCoverageSet

	GetCapabilities

	GetCoverage

To access the EOxServer by means of SOAP requests, you need to obtain the
access ULR from the service provider.
For machine readable configuration the SOAP service exposes the WSDL
configuration file: given a service address of ‘http://example.org/eo_wcs‘ the
corresponding WSDL file may be downloaded at the URL
‘http://example.org/eo_wcs?wsdl‘.

Installation

A quick-intall quide is provided below. For a full installation guide see the
INSTALL file in the source tree.

Quick installation guide for EOxServer on CentOS

0. Prerequisites:

	EOxServer installed and configured, including
MapServer and Apache HTTP Server

	Add the yum repository as described in the Installation on CentOS
available at http://packages.eox.at (recommended) or directoy obtain the
RPM packages from http://yum.packages.eox.at/el/6/testing/x86_64/.

1. Basic install:

The following standard installation sets up soap_proxy for an installed eoxserver
service accessible at http://127.0.0.1/eoxserver/ows

Caution: if upgrading an existing installation of soap_proxy, please be
sure to make a backup of the directory
/usr/share/axis2c_eo/services/soapProxy. The eo_soap_proxy-1.0.1-1 package
does not correctly preserve this directory duing upgrading.

Via the repository:

sudo yum install axis2c_eo eo_soap_proxy
sudo /etc/init.d/httpd restart

or the packages:

sudo rpm -i axis2c_eo-1.6.0-3.x86_64.rpm
sudo rpm -i eo_soap_proxy-1.0.1-1.x86_64.rpm
sudo /etc/init.d/httpd restart

2. Test:

To test open a webbrowser to the page:

http://<your_server>/sp_eowcs?wsdl

You should see the wsdl.

Further testing may be done via soapui. See the file
soap_proxy/test/README.txt in the source tree.

3. Add another service:

To add another service to the basic installation, perform the following steps
as root:

By way of example let us say our new soap_proxy service shall be available at
http://example.org/sp_foo, and the corresponding backend eoxserver is
accessible at http://127.0.0.1/eoxs_foo

First, in the directory /usr/local/share/axis2c/services recursively copy
the subdirectory soapProxy to soapFoo:

cp -r soapProxy soapFoo
cd soapFoo

In soapFoo rename libsoapProxy.so and soapProxy.wsdl:

mv libsoapProxy.so libsoapFoo.so
mv soapProxy.wsdl soapFoo.wsdl

Note that if selinux is enabled you may need adjust the object type of
libsoapFoo.so.

edit soapFoo.wsdl - at the bottom of the file chage soap:address location
to the new endpoint:

<soap:address location="http://example.org/sp_foo"/>

edit services.xml - change ServiceClass, BackendURL, and SOAPOperationsURL:

<parameter name="ServiceClass" locked="xsd:false">soapFoo</parameter>
<parameter name="BackendURL">http://127.0.0.1/eoxs_foo/ows</parameter>
<parameter name="SOAPOperationsURL">http://example.org/sp_foo</parameter>

Optionally, you may consider updating the <description>.

Edit the file /etc/httpd/conf.d/030_axis2c.conf: In the block <IfModule
mod_proxy.c>, add ‘ProxyPass’ and ‘ProxyPassReverse’ lines corresponding to
your new service:

ProxyPass /sp_foo http://127.0.0.1/sp_axis/services/soapFoo
ProxyPassReverse /sp_foo http://127.0.0.1/sp_axis/services/soapFoo

Old installation guide without rpms

0. Prerequisites:

The following is required before you can proceed with installing soap_proxy:

	mapserver installed & configured.

	Apache httpd server(httpd2 on some systems) installed and running

	eoxserver is optional

1. Old Non-rpm installation

This is suitable for general installation e.g. if you are not using
eoxerver but wish to use mapserver direcly.

Warning: some of the configuration details are out of date, but
the changes are not structural.

Also see the INSTALL file in the source tree.

Download from http://ws.apache.org/axis2/c/download.cgi

Make a directory for the code:

cd someplace
mkdir axis2c
setenv AXIS2C_HOME /path/to/someplace/axis2c

Follow the instructions in ‘doc’ to compile, and use something like the
following configure line to get mod_axis2 configured for compiling at the same
time:

./configure --with-apache2="/usr/include/apache2" \
 --with-apr="/usr/include/apr-1" --prefix=${AXIS2C_HOME}

Execute the standard sequence:

make
make install

Copy lib/libmod_axis2.so.0.6.0 to <apache2 modules directory> as
mod_axis2.so.

Edit the file ${AXIS2C_HOME}/axis2.xml and ensure that the parameter
enableMTOM has the value true.

	Check that the following directory exits, if not create it:

	${AXIS2C_HOME}/services

2. Deploy axis2 via your webserver

Configure mod_axis2 in the apache server config file. On Suse Linux one might
edit the file /etc/apache2/default-server.conf.

Set up a proxy:

<IfModule mod_proxy.c>
 ProxyRequests Off
 ProxyPass /sp_wcs http://127.0.0.1/o3s_axis/services/soapProxy
 ProxyPassReverse /sp_wcs http://127.0.0.1/o3s_axis/services/soapProxy
 ...
 <Proxy *>
 Order deny,allow
 Deny from all
 ...
 </Proxy>
</IfModule>

and deploy axis2:

LoadModule axis2_module /usr/lib64/apache2/mod_axis2.so
Axis2RepoPath /path/to/AXIS2C_HOME
Axis2LogFile /tmp/ax2logs
Axis2MaxLogFileSize 204800
Axis2LogLevel info
<Location /o3s_axis>
 SetHandler axis2_module
</Location>

3. Verify the deployment of axis2

Resart the webserver (httpd2) and open the following page:

http://127.0.0.1/o3s_axis/services

You should get a page that displays the text “Deployed Services” and is otherwise blank.

4. Configure and Compile Soap Proxy.

Change your working directory to the service directory in the soap_proxy source
code:

cd <...>/soap_proxy/service

In soapProxy.wsdl set <soap:address location=.../>. Copy
TEMLATE_services.xml to services.xml.
In services.xml set BackendURL to the address of eoxserver.

Now change to the src directory:

cd src

In your environment or in the Makefile set AXIS2C_HOME appropriately, and
execute:

make inst

Restart you httpd server and check that http://127.0.0.1/o3s_axis/services
shows the soapProxy service offering the four EO-WCS operations.

Further testing may be done via soapui. See the file
soap_proxy/test/README.txt in the source tree.

 EOxServer Presentations

EOxServer Presentations

Table of Contents

	EOxServer Presentations
	FOSS4G 2011, Denver

	AGIT 2011, Salzburg

	HMA-AWG February 2012, ESA ESRIN

	FOSSGIS 2012, Dessau

	Linuxwochen Wien 2012

	FOSS4G-CEE 2012, Prague

	HMA-AWG June 2012, ESA ESRIN

	Sentinel-3 OLCI/SLSTR and MERIS/(A)ATSR workshop 2012, ESA ESRIN

	SOMAP 2012, Vienna

This sections holds some links to presentations related to EOxServer.

FOSS4G 2011, Denver

WCS in MapServer 6.0 [http://2011.foss4g.org/sessions/enhanced-support-ogcs-web-coverage-service-wcs-mapserver-60]

Download the presentation

The FOSS4G [http://2011.foss4g.org/] is a global conference focused on Free
and Open Source Software for Geospatial, organized by OSGeo [http://osgeo.org].

AGIT 2011, Salzburg

Introducing WCS 2.0, EO-WCS, and Open Source implementations (MapServer,
rasdaman, and EOxServer) enabling the Online Data Access to Heterogeneous
Multidimensional Satellite Data [http://www.agit.at/index.php?option=com_content&task=view&id=132&Itemid=72]

Download the presentation

The Angewandte Geoinformatik (AGIT) [http://agit.at] is a conference for
applied geo-informatics held annually in Salzburg, Austria. Since 5 years it
includes the OSGeo Day where the presentation was given.

HMA-AWG February 2012, ESA ESRIN

WCS Standardization & Reference Implementation [https://wiki.services.eoportal.org/tiki-index.php?page=HMA%20AWG%20Meeting%231%202012%2015%20February%202012]

Download the presentation

The Heterogeneous Missions Access Architecture Working Group [https://wiki.services.eoportal.org/tiki-index.php?page=HMA+AWG] has been defined by the
European Space Agency together with other relevant EO data owners (national
agencies, European institutions and industry) for the management of the
evolution of the interoperability interface standards defined within the HMA
project and in follow on activities.

FOSSGIS 2012, Dessau

EOxServer, GDAL, MapServer - Zugang zu großen Archiven von Erdbeobachtungsdaten [http://www.fossgis.de/konferenz/2012/programm/events/379.de.html]

Download the presentation

Freie und Open Source Software für Geoinformationssysteme (FOSSGIS) [http://www.fossgis.de/konferenz.html] is the German speaking annual OSGeo
conference

Linuxwochen Wien 2012

EOxServer & Mapserver - Open Source Lösungen für Erdbeobachtungsdaten [http://linuxwochen.at/index.php?option=com_content&view=article&id=331&Itemid=83]

Download the presentation

Linuxwochen [http://linuxwochen.at/] is Austria’s biggest event series
dedicated to Open Source and Free Software.

FOSS4G-CEE 2012, Prague

EOxServer: A Solution for Online Access to Large Collections of Earth
Observation Data [http://foss4g-cee.org/program/presentations/eoxserver-a-solution-for-online-access-to-large-collections-of-earth-observation-data/]

Download the presentation

FOSS4G-CEE [http://foss4g-cee.org/] & Geoinformatics 2012 is the first
local conference focused on Free and Open Source Software for Geospatial in
Central and Eastern Europe. This year, it is organized together with the
traditional Geoinformatics FCE CTU conference in Prague.

HMA-AWG June 2012, ESA ESRIN

Web Coverage Service 2.0 MapServer Implementation [https://wiki.services.eoportal.org/tiki-index.php?page=HMA%20AWG%20Meeting%20no2%202012%208%20June%202012]

Download the presentation

Description: See HMA-AWG February 2012, ESA ESRIN above

Sentinel-3 OLCI/SLSTR and MERIS/(A)ATSR workshop 2012, ESA ESRIN

EOxServer - An Open Source Solution for Standardized Online Access to Earth
Observation Data [http://congrexprojects.com/sen3symposium/poster-sessions]

Download the poster

The Sentinel-3 OLCI/SLSTR and MERIS/(A)ATSR workshop [http://www.sen3symposium.org/] is organized by the European Space Agency,
together with Eumetsat, and hosted in ESA-ESRIN, Frascati, Italy. The
workshop is open to ESA Principle Investigators and co-investigators,
scientists and students using MERIS/(A)ATSR data, future follow-on
Sentinel-3 OLCI/SLSTR data users, representatives from GMES services,
national, European and international space agencies and value adding
industries.

SOMAP 2012, Vienna

EOxServer - Accessing Large Archives of Earth Observation Data Online [http://somap.cartography.at/?SOMAP_2012:Program:November_23rd_2012]
(photo [http://somap.cartography.at/plugins/gallery/includes/image.php?pic=L2hvbWUvLnNpdGVzLzEyL3NpdGUyNDMvd2ViL3NvbWFwMjAxMi9nYWxsZXJ5L3NvbWFwMDIvU09NQVAyMDEyXzIwMTIxMTIzLTE2NDIzOV9KTS5KUEc=&h=1060&w=1600])

Download the presentation

The Symposium on Service-Oriented Mapping [http://somap.cartography.at/?SOMAP_2012] aims to be a multidisciplinary
event, spanning from computer science to geobusiness. The aim is to bring
together various stakeholders in the area of Service-Oriented mapping (data
producers, mapping agencies and companies, infrastructure providers,
software developers, cartographers, artists, ...) in order to discuss the
influence of this new production environment (the networked spatial
infrastructure and its service-oriented distribution) on the map production
and the perspectives of the new paradigm for research and development in
cartography.

 Configuration Options

Configuration Options

In this section, all valid configuration options and their interpretations are
listed.

[core.system]

instance_id

Mandatory. The ID (name) of your instance. This is used on several locations
throughout EOxServer and is inserted into a number of service responses.

[processing.gdal.reftools]

vrt_tmp_dir

A path to a directory for temporary files created during the orthorectification
of referencial coverages. This configuration option defaults to the systems
standard [http://docs.python.org/library/tempfile.html#tempfile.mkstemp].

[backends.cache]

In future, options in this section will influence the behavior of caching of
FTP and rasdaman data.

[resources.coverages.coverage_id]

reservation_time

Determines the time a coverage ID is reserved when inserting a coverage into
the system. Needs to be in the following form:
<days>:<hours>:<minutes>:<seconds> and defaults to 0:0:30:0.

[services.owscommon]

http_service_url

Mandatory. This parameter is the actual domain and path URL to the OWS services
served with the EOxServer instance. This parameter is used in various contexts
and is also included in several OWS service responses.

[services.ows]

This section entails various service metadata settings which are embedded in
W*S GetCapabilities documents.

update_sequence=20131219T132000Z

name=EOxServer EO-WCS

title=Test configuration of MapServer used to demonstrate EOxServer

abstract=Test configuration of MapServer used to demonstrate EOxServer

onlineresource=http://eoxserver.org

keywords=<KEYWORDLIST>

fees=None

access_constraints=None

provider_name=<CONTACTORGANIZATION>

provider_site=<URL>

individual_name=<CONTACTPERSON>

position_name=<CONTACTPOSITION>

phone_voice=<CONTACTVOICETELEPHONE>

phone_facsimile=<CONTACTFACSIMILETELEPHONE>

delivery_point=<ADDRESS>

city=<CITY>

administrative_area=<STATEORPROVINCE>

postal_code=<POSTCODE>

country=<COUNTRY>

electronic_mail_address=<CONTACTELECTRONICMAILADDRESS>

hours_of_service=<HOURSOFSERVICE>

contact_instructions=<CONTACTINSTRUCTIONS>

role=Service provider

[services.ows.wms]

supported_formats=<MIME type>[,<MIME type>[,<MIME type> ...]]

A comma-separated list of MIME-types defining the raster file format supported
by the WMS getMap() operation. The MIME-types used for this option must be
defined in the Format Registry (see “Supported Raster File Formats and Their Configuration”).

supported_crs= <EPSG-code>[,<EPSG-code>[,<EPSG-code> ...]]

List of common CRSes supported by the WMS getMap() operation
(see also “Supported CRSs and Their Configuration”).

[services.ows.wcs]

supported_formats=<MIME type>[,<MIME type>[,<MIME type> ...]]

A comma-separated list of MIME-types defining the raster file format supported
by the WCS getCoverage() operation. The MIME-types used for this option must
be defined in the Format Registry (see “Supported Raster File Formats and Their Configuration”).

supported_crs= <EPSG-code>[,<EPSG-code>[,<EPSG-code> ...]]

List of common CRSes supported by the WCS getMap() operation.
(see also “Supported CRSs and Their Configuration”).

[services.ows.wcs20]

paging_count_default

The maximum number of wcs:coverageDescription elements returned in a WCS 2.0
EOCoverageSetDescription. This also limits the count parameter. Defaults to 10.

default_native_format=<MIME-type>

The default native format cases when the source format cannot be used
(read-only GDAL driver) and there is no explicit source-to-native format
mapping. This option must be always set to a valid format (GeoTIFF by default).
The MIME-type used for this option must be defined in the Format Registry (see
“Supported Raster File Formats and Their Configuration”).

source_to_native_format_map=[<src.MIME-type,native-MIME-type>[,<src.MIME-type,native-MIME-type> ...]]

The explicit source to native format mapping. As the name suggests, it defines
mapping of the (zero, one, or more) source formats to a non-defaults native
formats. The source formats are not restricted to the read-only ones. This
option accepts comma-separated list of MIME-type pairs.
The MIME-types used for this option must be defined in the Format Registry (see
“Supported Raster File Formats and Their Configuration”).

maxsize = 2048

The maximum size for each dimension in WCS GetCoverage responses. All sizes
above will result in exception reports.

[services.ows.wcst11]

allow_multiple_actions

This flag enables/disables mutiple actions per WCSt request. Defaults to False.

NOTE: It is safer to keep this feature disabled. In case of a failure of one of
the multiple actions, an OWS exception is returned without any notification which
of the actions were actually performed, and which have not been performed at all.
Therefore, we recomend to use only one action per request.

allowed_actions

Comma-separated list of allowed actions. Each item is one of Add, Delete,
UpdateAll, UpdateMetadata and UpdateDataPart. By default no action is
allowed and each needs to be explicitly activated. Currently, only the Add and
Delete actions are implemented by the EOxServer.

path_wcst_temp

Mandatory. A path to an existing directory for temporary data storage during the
WCS-T request processing. This should be a directory which is not used in any
other context, since it might be cleared under certain circumstances.

path_wcst_perm

Mandatory. A path to a directory for permanent storage of transacted data. This
is the final location where transacted datasets will be stored. It is also a
place where the Delete action (when enabled) is allowed to remove the stored
data.

[services.auth.base]

For detailed information about authorization refer to the documentation of the
Identity Management System.

pdb_type

Determine the Policy Decision Point type; defaults to ‘none’ which deactives
authorization.

authz_service

URL of the Authorization Service.

attribute_mapping

Path to an attribute dictionary for user attributes.

serviceID

Sets a custom service identifier

allowLocal

Allows full local access to the EOxServer. Use with care!

[webclient]

The following configuration options affect the behavior of the Webclient
interface.

preview_service
outline_service

The service type for the outline and the preview layer in the webclient map.
One of wms (default) or wmts.

preview_url
outline_url

The URL of the preview and outline service. Defaults to the vaule of the
services.owscommon.http_service_url configuration option.

[testing]

These configuration options are used within the context of the Autotest
instance.

binary_raster_comparison_enabled

Enable/disable the binary comparison of rasters in test runs. If disabled these
tests will be skipped. By default this feature is activated but might be turned
off in order to prevent test failures originating on platform differences.

rasdaman_enabled

Enable/disable rasdaman test cases. If disabled these tests will be skipped.
Defaults to false.

 Supported CRSs and Their Configuration

Supported CRSs and Their Configuration

Table of Contents

	Supported CRSs and Their Configuration
	Coordinate Reference Systems

	Web Map Service

	Web Coverage Service

This section describes configuration of Coordinate Reference Systems for both
WMS and WCS services.

Coordinate Reference Systems

The Coordinate Reference System (CRS) denotes the projection of coordinates to an
actual position on Earth.
EOxServer allows the configuration of supported CRSes for WMS and WCS services.
The CRSes used by EOxServer are specified exclusively by means of
EPSG numerical codes [http://www.epsg-registry.org].

Web Map Service

EOxServer allows the specification of the overall list of CRSes supported by all
published map layers (listed at the top layer of the WMS Capabilities XML
document). In case of no common CRS the list can be empty. In addition to the
list of common CRSes each individual layer has its native CRS which need
not to be necessarily listed among the common CRSes. The meaning of the native
CRS changes based on the EO dataset:

	Rectified Datasets - the actual CRS of the source geo-rectified raster data,

	Rectified Stitched Mosaic - the actual CRS of the source geo-rectified raster
data,

	Referenceable Dataset - the CRS of the geo-location grid tie-points.

	Time Series - always set to WGS 84 (may be subject to change in future).

This native CRS is also used as the CRS in which the geographic extent
(bounding-box) is published.

The list of WMS common CRSes is specified as a comma separated list of EPSG codes
in the EOxServer’s configuration (<instance path>/conf/eoxserver.conf) in
section serices.ows.wms:

[services.ows.wms]
supported_crs= <EPSG-code>[,<EPSG-code>[,<EPSG-code> ...]]

Web Coverage Service

EOxServer allows the specification of a list of CRCes to be used by the WCS.
These CRSes can be used to select subsets of the desired coverage or, in case of
rectified datasets (including rectified stitched mosaics) to specify the
CRS of the output image data. The latter case is not applicabe to referenceable
datasets as these are always returned in the original image geometry.

The list of WCS supported CRSes is specified as a comma-separated list of EPSG
codes in the EOxServer configuration (<instance path>/conf/eoxserver.conf)
in section serices.ows.wcs:

[services.ows.wcs]
supported_crs= <EPSG-code>[,<EPSG-code>[,<EPSG-code> ...]]

 Supported Raster File Formats and Their Configuration

Supported Raster File Formats and Their Configuration

Table of Contents

	Supported Raster File Formats and Their Configuration
	Format Registry

	Format Configuration

	Web Coverage Service - Format Configuration

	Web Coverage Service - Native Format Configuration

	Web Map Service - Format Configuration

	References

In this section, the EOxServer’s handling of raster file
formats and OWS service specific format configuration is described.

Format Registry

The format registry is the list of raster file formats recognised by EOxServer.
It holds definitions of both input and output formats. Each format record
defines the MIME-type (unique, primary key), library, driver, and the default
file extension.

Currently, EOxServer handles the raster data exclusively by means of the
GDAL [http://www.gdal.org] library. Thus, in principle, any raster file
format supported by the GDAL [http://www.gdal.org/formats_list.html] library
is supported by EOxServer. In particular, any raster file format readable by
the GDAL library (provided that the file structure can be decomposed to one
single-type, single- or multi-band image) can be used as the input and, vice
versa, any raster file format writeable by the GDAL library can used as the
output produced by WCS and WMS services.

Any raster file format intended to be used by EOxServer must be defined in
the format registry. The format registry then provides unique mappings from
MIME-type to the (GDAL) format driver.

Format Configuration

The format registry configuration is split in two parts (files):

	per-installation (mandatory) format configuration (set
up automatically during the EOxServer installation) defining the default
baseline set of formats
(<instal.path>/eoxserver/conf/default_formats.conf).

	per-instance (optional) format configuration allowing customization of the
format registry (<instance path>/conf/formats.conf).

In case of conflicting format definitions, the per-instance configuration takes
precedence. Both formats’ configuration files share the same text file format.

The formats’ configuration is a simple text file containing a simple list of
format definitions. One format definition (record) per line. Each record is
then a comma separated list of the following text fields:

<MIME-type>, <driver>, <file extension>

The mime type is used as the primary key and thus any repeated MIME-type will
rewrite the previous format definition(s) using this MIME-type.
The driver field should be in format GDAL/<GDAL driver name>. To list
available drivers provided by your GDAL installation use the following command:

gdalinfo --formats

The GDAL prefix is used as place-holder to allow future use of additional
library back-ends. The file extension shall be written including the separating
dot .. Any leading or trailing white-characters as well as empty lines
are ignored. The # character is used as line-comment and any content
between this character and the end of the line is ignored.

An example format definition:

image/tiff,GDAL/GTiff,.tif # GeoTIFF raster file format

Since the list of supported drivers may vary for different installations of
the back-end (GDAL) library, the library drivers are checked by EOxServer
ignoring any format definitions requiring non-supported library drivers. Any
invalid format record is reported to the EOxServer log.
Further, EOxServer checks automatically which of the library drivers are
‘read-only’, i.e., which cannot be used to produce output images, and
restricts these to be used for data input only.

Web Coverage Service - Format Configuration

The list of the file formats supported by the Web Coverage Service (WCS) is
specified in the EOxServer configuration (<instance
path>/conf/eoxserver.conf) in the section serices.ows.wcs:

[services.ows.wcs]
supported_formats=<MIME type>[,<MIME type>[,<MIME type> ...]]

The supported WCS formats are specified as a comma-separated list of MIME-types.
The listed MIME-types must be defined in the format registry otherwise they will
be ignored. Read-only file formats will also be ignored.

The supported formats are announced through the WCS Capabilities and
CoverageDescription (the output may vary based on the WCS version used).
The use of in invalid MIME-types (not listed among the supported formats) in
getCoverge() requests will lead to errors (OWS Exceptions).

Web Coverage Service - Native Format Configuration

The native format (as defined by WCS 2.0.1 [OGC 09-110r4] [http://www.opengeospatial.org/standards/wcs]) is the default
raster file format returned by the getCoverage() operation in case of a
missing explicit format specification. By default, EOxServer sets the native
format to the format of the stored source data (source format), however, in
cases when the source format cannot be used (‘read-only’ source format) and/or
another default format is desired, EOxServer allows the configuration of
WCS native formats (<instance path>/conf/eoxserver.conf, section
services.ows.wcs20):

[services.ows.wcs20]
default_native_format=<MIME-type>
source_to_native_format_map=[<src.MIME-type,native-MIME-type>[,<src.MIME-type,native-MIME-type> ...]]

The default native format option is used in cases when the source format
cannot be used (read-only) and no source to native format mapping is present.
This option must always be set to a valid format (GeoTIFF by default). The
source to native format mapping, as the name suggests, maps the (zero, one, or
more) source format(s) to non-default native formats. The source formats are
not restricted to the read-only ones. This option accepts a comma-separated
list of MIME-type pairs.

Web Map Service - Format Configuration

The list of the file formats supported by the Web Map Service’s (WMS)
getMap() operation is specified in the EOxServer configuration
(<instance path>/conf/eoxserver.conf) in section serices.ows.wms:

[services.ows.wms]
supported_formats=<MIME type>[,<MIME type>[,<MIME type> ...]]

The supported WMS formats are specified as a comma-separated list of MIME-types.
The listed MIME-types must be defined in the format registry otherwise they will
be ignored. The read-only file formats will be ignored.

The supported formats are announced through the WMS Capabilities (the output
may vary based on the WMS version used).

References

	[OGC 09-110r4]:	http://www.opengeospatial.org/standards/wcs

 Asynchronous Task Processing

Asynchronous Task Processing

Table of Contents

	Asynchronous Task Processing
	Introduction

	Tasks
	Introduction

	Life-cycle

	ATP Installation and Configuration

	ATP Operation

	ATP Demo Application

	Performance considerations

	Further reading

Introduction

The Asynchronous Task Processing (ATP) subsystem, as the name suggests,
extends the EOxServer functionality by the ability to process tasks
asynchronously, i.e., in background independently of the default EOxServer’s
synchronous client request processing.

Although the ATP subsystem is primarily designed to support asynchronous
request processing of OGC Web Services such as the Web Coverage Service
transaction extension (WCS-T) and/or the Web Processing Service (WPS), it is
not limited to these and other parts of EOxServer may use it as well.

The ATP subsystem employs the model of a single shared task queue and one or
more Asynchronous Task Processing Daemons (APTD) executing the pending
tasks pulled from the task queue. A single ATPD is not restricted to a
single processed task at time and it can internally process multiple tasks
concurrently, e.g., by employing a pool of parallel worker threads assigned
to multiple CPU cores.

The ATP subsystem is implemented as Django application using a DB model as the
task queue. Although the underlying DB storage may be seen as suboptimal in
terms of performance and latency it assures tolerance of the subsystem to
possible failures or maintenance shut-downs of both EOxServer and/or APTDs.

Tasks

Introduction

For the correct operation of the ATP subsystem it is essential to understand the
concept of a task and its life-cycle.

A task is an atomic and isolated action (amount of work) to be performed
by EOxServer. When created, each task has a handler subroutine (python
code to be executed) and a set of task specific input parameters to be
processed by the handler subroutine. When finished, the tasks produce
outputs.

The tasks may be created by different applications (EOxServer’s apps and
services). The tasks sharing the same handler subroutine and generic parameters
belong to the same task type.

The ATP is expected to be shared by multiple applications. APTDs pull the tasks
from the shared queue in First-In-First-Out fashion (regardless of the task
type) and execute the given handler subroutines. Significant benefit of this
shared nature of the APT subsystem is the control over the processing resources
(pool of workers) and isolation of the execution details from the application
(isolated from details such as the number of ATPD and working threads).

Life-cycle

The life-cycle of an asynchronous task, i.e., its possible states and state
transitions are displayed in Fig.3.

[image: ../_images/processes_task_state1.png]
Fig.1: ATP Task State Diagram

Any existing task can be in one of the following states:

	ACCEPTED - a new enqueued task waiting to be pulled by an ATPD (initial
state)

	SCHEDULED - a task pulled (dequeued) by an ATPD but not yet started

	RUNNING - a task being processed by an ATPD

	PAUSED - a task which has been put on hold and which is waiting to be
resumed

	FINISHED - a task which has been finished successfully (terminal state)

	FAILED - a task which has been finished by a failure (terminal state)

When a task is created and enqueued for processing (ACCEPTED) it is stored in
the DB task queue waiting for an ATPD to pull the task out. In this state, it is
safely stored and protected against failures and shut-downs of both of the
producer (ATPD can access the DB) and of the ATPD (producer can access the DB).

When a task is in one of the intermediate states (SCHEDULED, RUNNING, or
PAUSED) it is being processed by an ATPD and it is vulnerable to possible
failures. In these states, any unexpected crash of the ATPD could leave a
task in an intermediate state forever. Therefore each task type has assigned
a security time-out after which the task is considered to be abandoned and
shall be re-enqueued for new processing (ACCEPTED). A task, however, can be
re-enqueued for limited times (3 times by default). After the number of
restarts has been exceeded the task will be rejected (FAILED). This
mechanism ensures that no task would be abandoned unfinished after an
occasional ATPD crash but also that a defective task would get stacked in
the time-out loop.

When a task is in one of the terminal states (FINISHED or FAILED) it is safely
stored in the DB. By default a terminated task will be stored forever, however,
it is possible to specify an task type specific time-out after which the
terminated tasks will be removed automatically.

ATP Installation and Configuration

There are no specific steps to install and configure the ATP subsystem except
the basic EOxServer installation and configuration. The ATP is tightly coupled
with EOxServer and works right out of box.

To track the status of the executed tasks and view the stored outputs auxiliary
ATP HTML views can be enabled by adding following lines to the URL patterns
(‘url.py’ configuration file) of the actual EOxServer instance:

urlpatterns = patterns('',

 ...

 (r'^process/status$', procViews.status),
 (r'^process/status/(?P<requestType>[^/]{,64})/(?P<requestID>[^/]{,64})$', procViews.status),
 (r'^process/task$', procViews.task),
 (r'^process/response/(?P<requestType>[^/]{,64})/(?P<requestID>[^/]{,64})', procViews.response),

 ...
)

ATP Operation

The ATP operation requires at least one ATPD to be running. Currently, there
is only one ATPD implemented in EOxServer. This ATPD uses multiple
sub-processes to process the tasks concurrently. By default, the numbers of
sub-processes equals the number of available CPU cores. This ATPD can be
executed as follows:

$ export PYTHONPATH=<EOxServer install.path>:<EOxServer instance path>
$ export DJANGO_SETTINGS_MODULE=autotest.settings
$ <EOxServer install.path>/tools/asyncProcServer.py

[0x504DD5AE614D562C] INFO: Default number of working threads: 4
[0x504DD5AE614D562C] INFO: 'autotest.settings' ... is set as the Django settings module
SpatiaLite version ..: 2.4.0 Supported Extensions:
 - 'VirtualShape' [direct Shapefile access]
 - 'VirtualDbf' [direct Dbf access]
 - 'VirtualText' [direct CSV/TXT access]
 - 'VirtualNetwork' [Dijkstra shortest path]
 - 'RTree' [Spatial Index - R*Tree]
 - 'MbrCache' [Spatial Index - MBR cache]
 - 'VirtualFDO' [FDO-OGR interoperability]
 - 'SpatiaLite' [Spatial SQL - OGC]
PROJ.4 Rel. 4.7.1, 23 September 2009
GEOS version 3.2.2-CAPI-1.6.2
[0x504DD5AE614D562C] INFO: ATPD Asynchronous Task Processing Daemon has just been started!
[0x504DD5AE614D562C] INFO: ATPD: id=0x504DD5AE614D562C (5786516041174439468)
[0x504DD5AE614D562C] INFO: ATPD: hostname=localhost
[0x504DD5AE614D562C] INFO: ATPD: pid=3295

The PYTHONPATH and DJANGO_SETTINGS_MODULE values can be passed as
command line arguments by the ‘-p’ and ‘-s’ options, respectively. The default
number of worker sub-processes can be overridden by the ‘-n’ option:

$ <EOxServer install.path>/tools/asyncProcServer.py -n 6 -s "autotest.settings" -p "<EOxServer install.path>" -p "<EOxServer instance path>"

[0xADDB15DB482ED425] INFO: Default number of working threads: 4
[0xADDB15DB482ED425] INFO: Setting number of working threads to: 6
[0xADDB15DB482ED425] INFO: 'autotest.settings' ... is set as the Django settings module
SpatiaLite version ..: 2.4.0 Supported Extensions:
 - 'VirtualShape' [direct Shapefile access]
 - 'VirtualDbf' [direct Dbf access]
 - 'VirtualText' [direct CSV/TXT access]
 - 'VirtualNetwork' [Dijkstra shortest path]
 - 'RTree' [Spatial Index - R*Tree]
 - 'MbrCache' [Spatial Index - MBR cache]
 - 'VirtualFDO' [FDO-OGR interoperability]
 - 'SpatiaLite' [Spatial SQL - OGC]
PROJ.4 Rel. 4.7.1, 23 September 2009
GEOS version 3.2.2-CAPI-1.6.2
[0xADDB15DB482ED425] INFO: ATPD Asynchronous Task Processing Daemon has just been started!
[0xADDB15DB482ED425] INFO: ATPD: id=0xADDB15DB482ED425 (-5919113253695335387)
[0xADDB15DB482ED425] INFO: ATPD: hostname=holly3
[0xADDB15DB482ED425] INFO: ATPD: pid=3345

The server can be gracefully terminated by using ‘Ctrl-C’ or the TERM signal.

ATP Demo Application

There is a demo application showing the running of the ATPD and the ATP as
such available in the default EOxServer installation. This demo application
can be executed as follows:

$ export PYTHONPATH=<EOxServer install.path>:<EOxServer instance path>
$ export DJANGO_SETTINGS_MODULE=autotest.settings
$ <EOxServer install.path>/atp_test.py
SpatiaLite version ..: 2.4.0 Supported Extensions:
 - 'VirtualShape' [direct Shapefile access]
 - 'VirtualDbf' [direct Dbf access]
 - 'VirtualText' [direct CSV/TXT access]
 - 'VirtualNetwork' [Dijkstra shortest path]
 - 'RTree' [Spatial Index - R*Tree]
 - 'MbrCache' [Spatial Index - MBR cache]
 - 'VirtualFDO' [FDO-OGR interoperability]
 - 'SpatiaLite' [Spatial SQL - OGC]
PROJ.4 Rel. 4.7.1, 23 September 2009
GEOS version 3.2.2-CAPI-1.6.2
ENQUEUE: test_5710ffb4189c4345aebde828d2bbc640 000000
ENQUEUE: test_47e161ec633b4105a1d174759f4a933d 000001
ENQUEUE: test_e53cf3ae654a447191e1308d805d8777 000002
ENQUEUE: test_fb71659cb9274383a8820e0110c86e15 000003
ENQUEUE: test_0e6e5edcdf8244d9b25a932cbd8c6112 000004
ENQUEUE: test_be5fa7af84444c47aba731c8e816f99b 000005
ENQUEUE: test_aae3faa14b5e4f48b8cabae7a0b01a3b 000006
ENQUEUE: test_6be7ea23f0984efbb09181503aa1a974 000007

Performance considerations

The ATP is designed for resource demanding longer running tasks (10 seconds and
more) which in case of a synchronous operation could clog the system or lead to
connection time-outs. On contrary, light tasks (less than 1 sec.) should
preferably be executed synchronously.

Further reading

The database model used in the ATP subsystem is described in the Task Tracker Data Model section. The developers’ guide, helping with the creation of ATP
based applications, can be found in the Asynchronous Task Processing - Developers Guide section. The
complete API reference can be found in
eoxserver.resources.processes.tracker.

 Web Coverage Service - Transaction Extension

Web Coverage Service - Transaction Extension

Table of Contents

	Web Coverage Service - Transaction Extension
	Introduction

	Implementation Details
	Configuration

	Adding New Coverages

	Deleting Existing Coverages

	Asynchronous Operation

	References

Introduction

This section describes the Web Coverage Service - Transaction (WCS-T)
extension as implemented in EOxServer. The WCS-T interface is specified by
the Open Geospatial Consortium (OGC) Web Coverage Service - Transaction
operation extension (WCS-T) [OGC 07-068r4] [http://portal.opengeospatial.org/files/?artifact_id=28506] standard which describes the
invocation of the service in detail. The WCS-T functionality is closely
related to the data model of the WCS 2.0 Earth Observation Application
Profile (EO-WCS) employed by EOxServer and allows the specification of
EO-WCS metadata for newly inserted EO datasets.

Implementation Details

EOxServer provides to option to insert (Add action) and delete
(Delete) coverages (datasets in EO-WCS jargon) via the WCS-T service.

Configuration

For details on the WCS-T configuration see [services.ows.wcst11].

Adding New Coverages

Currently, it is possible to insert only Rectified and Referenceable
datasets. It is beyond the capabilities of the WCS-T service to assign
datasets to container coverage types such as the Rectified Stitched Mosaic or
Dataset Series. Neither is it possible to create plain (non-EO-WCS) coverages.

The input image data must be in valid GeoTIFF file format. No other file
format is currently supported. The input is passed to the WCS-T service as a
reference (URL, e.g., a GetCoverage KVP encoded request). It is not
possible to embed the input image data in the WCS-T request.

The creation of a new EO-WCS dataset requires the specification of EO
metadata. These metadata can be either passed by the user (recommended way)
as a reference using the ows:medatata XML element, or generated
automatically by the WCS-T service guessing some of the parameters from the
GeoTIFF annotation.

The user provided EO-WCS metadata can be either in form of an EO-O&M XML
document or arbitrary XML document with embedded EO-O&M XML fragment (such
as the DescribeCoverage response of a WCS service).

The following is an example of a valid request to add a coverage:

<?xml version="1.0" encoding="UTF-8"?>
<wcst:Transaction service="WCS" version="1.1"
 xmlns:wcst="http://www.opengis.net/wcs/1.1/wcst"
 xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wcs/1.1/wcst http://schemas.opengis.net/wcst/1.1/wcstTransaction.xsd">
 <wcst:InputCoverages>
 <wcst:Coverage>
 <!-- optional coverage identifier -->
 <ows:Identifier>CoverageId</ows:Identifier>
 <!-- reference to image data -->
 <ows:Reference
 xlink:href="http://foo.eox.at/ows?service=WCS&version=2.0.0&request=getCoverage&format=image/tiff&coverageid=CoverageId"
 xlink:role="urn:ogc:def:role:WCS:1.1:Pixels"/>
 <!-- optional reference to EO metadata -->
 <ows:Metadata
 xlink:href="http://foo.eox.at/ows?service=WCS&version=2.0.0&request=describeCoverage&coverageid=CoverageId"
 xlink:role="http://www.opengis.net/eop/2.0/EarthObservation"/>
 <wcst:Action codeSpace="http://schemas.opengis.net/wcs/1.1.0/actions.xml">Add</wcst:Action>
 </wcst:Coverage>
 </wcst:InputCoverages>
</wcst:Transaction>

The coverage identifier specified by the ows:Identifier element is
optional. When not specified or not usable (most likely because it is
already in use by another coverage) a new, unique identifier is generated
automatically. Thus the WCS-T service is not bound to the user provided
identifier and the actual identifier shall always be read from the
transaction response:

<?xml version="1.0" encoding="utf-8"?>
<TransactionResponse
 xmlns="http://www.opengis.net/wcs/1.1/wcst"
 xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wcs/1.1/wcst http://schemas.opengis.net/wcst/1.1/wcstTransaction.xsd">
 <RequestId>wcstReq_btjiFfo4aOvT1BQL-ki5</RequestId>
 <ows:Identifier>wcstCov_LoEYNGm3d10ZhUUGdlmm</ows:Identifier>
</TransactionResponse>

Unless there is a need for a specific coverage identifier we recommend to
leave the identifier selection to be performed by the WCS-T service and omit
the ows:Identifier element in case of WCS-T coverage inserts.

Deleting Existing Coverages

The coverages inserted via the WCS-T Add action can be removed by means of
the WCS-T Delete action. For security reasons, only the coverages inserted
via WCS-T can be actually removed via WCS-T. The only parameter required in
the removal request is the coverage (dataset) identifier
(wcst:InputCoverages XML element):

<?xml version="1.0" encoding="UTF-8"?>
<wcst:Transaction service="WCS" version="1.1"
 xmlns:wcst="http://www.opengis.net/wcs/1.1/wcst"
 xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wcs/1.1/wcst http://schemas.opengis.net/wcst/1.1/wcstTransaction.xsd">
 <wcst:InputCoverages>
 <wcst:Coverage>
 <!-- required coverage identifier -->
 <ows:Identifier>wcstCov_LoEYNGm3d10ZhUUGdlmm</ows:Identifier>
 <wcst:Action codeSpace="http://schemas.opengis.net/wcs/1.1.0/actions.xml">Delete</wcst:Action>
 </wcst:Coverage>
 </wcst:InputCoverages>
</wcst:Transaction>

Asynchronous Operation

EOxServer supports asynchronous WCS-T requests as specified by the [OGC
07-068r4] [http://portal.opengeospatial.org/files/?artifact_id=28506] standard. Asynchronous request processing can be invoked by any
WCS-T request including the wcst:ResponseHandler element. This element
shall contain an URL of the remote response handler where the response shall
be sent once the asynchronous processing is finished:

<?xml version="1.0" encoding="UTF-8"?>
<wcst:Transaction service="WCS" version="1.1"
 xmlns:wcst="http://www.opengis.net/wcs/1.1/wcst"
 xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wcs/1.1/wcst http://schemas.opengis.net/wcst/1.1/wcstTransaction.xsd">
 <wcst:InputCoverages>
 ...
 </wcst:InputCoverages>
 <wcst:RequestId>RequestId</wcst:RequestId>
 <!-- XML element enabling the asynchronous WCS-T processing -->
 <wcst:ResponseHandler>http://foo.eox.at/WCSTResponseHandler</wcst:ResponseHandler>
</wcst:Transaction>

Currently, the WCS-T implementation supports HTTP and FTP URL schemas for the
response handler. In the first case the response is delivered using HTTP/POST.
In the latter case, the response is uploaded to a remote FTP server. In case of
FTP, the user may specify a full file-name of the delivered file or target
directory. If the FTP target is a directory the file-name of the stored response
is generated from the request ID returned by the acknowledgement response:

<?xml version="1.0" encoding="utf-8"?>
<Acknowledgement
 xmlns="http://www.opengis.net/wcs/1.1/wcst"
 xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wcs/1.1/wcst http://schemas.opengis.net/wcst/1.1/wcstTransaction.xsd">
 <TimeStamp>2012-04-13T16:00:07Z</TimeStamp>
 <RequestId>wcstReq_6syhsJbO2TtYwVxFHOur</RequestId>
</Acknowledgement>

It is worth to mention that request identifiers can be specified in WCS-T
requests, however this identifier provides only a hint to the WCS-T server
and the server may change it to another value. Thus it is recommended to
rely on the request identifier written in the WCS-T response and better omit
the optional wcst:RequestId XML element in the WCS-T request.

It is possible to specify user/password for the response handler for both HTTP
and FTP using the typical URL structure:

<schema>://[<username>@<password>]<host>/<path>

No other authentication is currently supported.

The asynchronous WCS-T operation requires the ATP (Asynchronous Task
Processing) subsystem and, in particular, an ATPD (ATP Daemon) running. For
more info on the ATP subsystem see the Asynchronous Task Processing section.

References

	[OGC 07-068r4]:	http://portal.opengeospatial.org/files/?artifact_id=28506

 Requests for Comments

Requests for Comments

EOxServer Requests for Comments (RFCs) are a means for EOxServer developers to
share their ideas and feature requests, propose enhancements, and discuss
high-level issues concerning the further development of the software.

RFC Procedures

See the RFC Policies for details.

Writing RFCs

If you want to write a Request for Comments, please read the
Guidelines for Requests for Comments first.

RFCs

Table: “List of accepted EOxServer RFCs” below lists all accepted EOxServer
RFCs and their implementation status [1].

List of accepted EOxServer RFCs

	No.
	Title
	Status

	0
	RFC 0: Project Steering Committee Guidelines
	Effective

	1
	RFC 1: An Extensible Software Architecture for EOxServer
	Implemented in version 0.2

	2
	RFC 2: Extension Mechanism for EOxServer
	Implemented in version 0.2

	6
	RFC 6: Directory Structure
	Implemented in version 0.2

	7
	RFC 7: Release Guidelines
	Effective

	8
	RFC 8: SVN Commit Management
	Effective

	9
	RFC 9: SOAP Binding of WCS GetCoverage Response
	Implemented in SOAP Proxy

	10
	RFC 10: SOAP Proxy
	Implemented in SOAP Proxy

	12
	RFC 12: Backends for the Data Access Layer
	Implemented in version 0.2

	13
	RFC 13: WCS-T 1.1 Interface Prototype
	Implemented in version 0.2

	14
	RFC 14: Asynchronous Task Processing (ATP)
	Implemented in version 0.2

	15
	RFC 15: Access Control Support
	Implemented in version 0.2

	16
	RFC 16: Referenceable Grid Coverages
	Implemented in version 0.2

	17
	RFC 17: Configuration of Supported Output Formats and CRSes
	Implemented in version 0.3

	19
	RFC 19: Migrate project repository from svn to git
	Effective

The list below provides links to all EOxServer RFCs available:

	RFC 0: Project Steering Committee Guidelines

	RFC 1: An Extensible Software Architecture for EOxServer

	RFC 2: Extension Mechanism for EOxServer

	RFC 3: OGC Service Extensions

	RFC 4: Data Packaging

	RFC 5: Processing Chains

	RFC 6: Directory Structure

	RFC 7: Release Guidelines

	RFC 8: SVN Commit Management

	RFC 9: SOAP Binding of WCS GetCoverage Response

	RFC 10: SOAP Proxy

	RFC 11: WPS 1.0.0 Interface Prototype

	RFC 12: Backends for the Data Access Layer

	RFC 13: WCS-T 1.1 Interface Prototype

	RFC 14: Asynchronous Task Processing (ATP)

	RFC 15: Access Control Support

	RFC 16: Referenceable Grid Coverages

	RFC 17: Configuration of Supported Output Formats and CRSes

	RFC 18: Operator Interface Architecture

	RFC 19: Migrate project repository from svn to git

	[1]	Note that this list might not be fully up to date although we try hard.

 RFC Policies

RFC Policies

	Author:	Stephan Krause, Stephan Meißl

	Date:	2011-05-13

This document contains the policies that govern the life cycle of
Requests for Comments (RFCs). It may be changed by submitting an RFC for
discussion and vote following the provisions of this document.

In this document the terms shall, should and may have a
normative meaning, that is well known from software engineering and
standards definition:

	shall: indicates an absolute requirement to be strictly followed

	should: indicates a recommendation

	may: indicates an option

Status of RFCs

Every RFC has a status. That status may be one of:

	IN PREPARATION: Some text for the RFC has been posted, but that is
not the version to be submitted for discussion and voting. An RFC that
has this status is still work in progress.

	PENDING: The text of the RFC has been submitted for discussion. It
may still be altered by the RFC authors in order to reflect the state
of the discussion.

	WITHDRAWN: The text of the RFC has been withdrawn.

	VOTING ACTIVE: The text of the RFC has been frozen and voting is
going on.

	ACCEPTED: A vote has been held on the RFC and it has been
accepted. Implementation has started.

	REJECTED: A vote has been held on the RFC and it has been
rejected. The RFC is not going to be implemented and the discussion
is closed.

	POSTPONED: A vote has been held on the RFC and it has been
postponed to a later stage of development. The RFC may be reopened any
time.

	OBSOLETE: A vote has been held on the RFC and it has been declared
obsolete. It has been superseded by another RFC or it is not
considered applicable any more.

The status IN PREPARATION may be declared by the authors of the
RFC. They may move it to PENDING once they consider it ready for
discussion and submission to a vote. Any further status changes shall
be declared according to the results of the discussion and the voting
(see RFC 0: Project Steering Committee Guidelines).

The following status changes are possible:

	from IN PREPARATION to PENDING, WITHDRAWN

	from PENDING to WITHDRAWN or via VOTING ACTIVE to ACCEPTED, REJECTED,
POSTPONED

	from ACCEPTED via VOTING ACTIVE to PENDING, POSTPONED, OBSOLETE

	from POSTPONED to PENDING or via VOTING ACTIVE to ACCEPTED, REJECTED,
OBSOLETE

Creation of RFCs

Any one who has write access to the EOxServer SVN may submit an RFC. It
shall obey the rules of the Guidelines for Requests for Comments. The initial status of the
RFC is IN PREPARATION, lest the authors deem it to be mature for
discussion from the start, in which case they may submit it as PENDING. The
RFC shall be assigned the next possible consecutive number.

When beginning work on an RFC the authors shall inform the PSC chair.

As long as the RFC is IN PREPARATION or PENDING, only the authors of the
RFC shall edit it. Anyone else who wants to contribute to the document
shall submit his or her text to the discussion page. The authors may
also decide to let him or her become a co-author who has all the rights
of an author.

Authors may choose to support their RFC by implementing the needed changes
and committing them to a subdirectory of the sandbox directory for review.

Discussion Pages

Any RFC, especially those still IN PREPARATION, shall have a discussion page
on the EOxServer Trac Wiki (http://eoxserver.org/wiki). The design
and the location of the discussion page is detailed in the Guidelines for Requests for Comments.

The discussion page may include links to preliminary implementations
which have been committed to a sandbox subdirectory.

Pending RFCs

PENDING RFCs are submitted for discussion. They may still be edited to
reflect the state of the discussion or to correct errors. They should
not be altered in a radical manner though, changing the proposed
solution completely. In this case the authors may withdraw the RFC and
propose another one.

An RFC shall be PENDING for at least two business days (in Austria) till
a vote can be held on it (see RFC 0: Project Steering Committee Guidelines).

Withdrawal of RFCs

The authors may withdraw an RFC at any time as long as it is IN
PREPARATION or PENDING. The RFC status will change to WITHDRAWN. The
authors may decide to leave the text as is or remove everything except
for the basic information as defined in the Guidelines for Requests for Comments.

Voting on RFCs

The voting on RFCs is defined in the first RFC: RFC 0: Project Steering Committee Guidelines.

 Guidelines for Requests for Comments

Guidelines for Requests for Comments

	Author:	Stephan Krause

	Date:	2011-02-19

	Last Edit:	$Date$

	Discussion:	http://eoxserver.org/wiki/DiscussionRfcTemplate

This document contains instructions for writing RFCs as well as a
template for RFCs. Please read it carefully before submitting your own
requests.

In this document the terms shall, should and may have a
normative meaning that is well known from software engineering and
standards definition:

	shall: indicates an absolute requirement to be strictly followed

	should: indicates a recommended item

	may: indicates an optional item

Location of an RFC

The text of an RFC shall be located in the EOxServer SVN Trunk in the
directory docs/en/rfc under the file name rfc<number>.rst. It
will be published automatically on the Request For Comments site once
the documentation has been built anew.

Discussion Page

Once the RFC status has been moved to PENDING, it is required that
the authors create a discussion page for the RFC on the EOxServer Trac
Wiki. A Template for RFC Discussion Pages is included below.

Structure of an RFC

Heading

The page heading shall be in the format “RFC <number>: <title>”.

Basic Information

The RFC shall start with a block containing the author(s) of the
request, the creation date, the date of the last edit and its status,
like in the following example:

	Author:	John Doe

	Created:	2011-02-18

	Last Edit:	$Date$

	Status:	PENDING

	Discussion:	http://eoxserver.org/wiki/DiscussionRfcTemplate

Description of the RFC

The first one or two paragraphs shall contain a short description of the
RFC. They should give a high-level overview of the propositions of the
request.

Introduction

The first section of the RFC shall be called “Introduction”. It should
contain a motivation for the RFC, describe the problem(s) the
RFC addresses and give an overview of the proposed solution. It should
contain forward references to the sections where specific items are
discussed further where applicable.

Keep the introduction short and simple! It is not the place to go into
the details, this should be done in the sections of the body of the RFC.

Body of the RFC

The body of the RFC starts right after the introduction. It may start
with a more in-depth description of the motivation for the RFC and the
problems to address if this cannot be discussed exhaustively in the
introduction. Following that the proposed solution should be described
in detail and as vividly as possible.

Use examples, tables and pictures where appropriate! Use references to
external resources, to the documentation, to other RFCs, to the
EOxServer Trac or to the source code.

The body of the RFC may be contained in one section or structured
in sections, subsections and subsubsections or even further.

Voting History

The penultimate section of the RFC shall be called “Voting History”. It
shall contain the records of the votes held on subject of the RFC. As
long as the RFC is in preparation or pending, the section body shall be
“N/A”. Example of a voting record:

	Motion:	To accept RFC 1

	Voting Start:	2011-03-01

	Voting End:	2011-03-02

	Result:	3 ACCEPTED, 0 PENDING

Traceability

The last section of the RFC shall be called “Traceability”. It shall
contain references to the requirements that have motivated the request
if applicable. Furthermore, if the request was accepted, it shall
contain references to the tickets in the EOxServer Trac system that
concern its implementation. Example:

	Requirements:	O3S_CAP_100

	Tickets:	#1

Where possible, the requirements and tickets shall be hyperlinked to the
respective resources (e.g. requirements document, requirement tracing
system, EOxServer Trac).

Template for RFCs

Here is a template you should use for your RFCs. Please replace the
items in brackets <> by the appropriate text:

.. _rfc_<number>:

RFC <number>: <title>
=====================

:Author: <author name>
:Created: <date when RFC was created: YYYY-MM-DD>
:Last Edit: <date of last edit: YYYY-MM-DD, please use subversion keyword "Date">
:Status: <one of: IN PREPARATION, PENDING, WITHDRWAWN, VOTING ACTIVE,
 ACCEPTED, REJECTED, POSTPONED, OBSOLETE>
:Discussion: <external link to discussion page on EOxServer Trac>

<short description of the RFC>

Introduction

<Mandatory. Overview of motivation, addressed problems and proposed
 solution>

<Section title>

<Any number of sections may follow.>

<Subsection title>
~~~~~~~~~~~~~~~~~~

<They may have any number of subsections.>

<Subsubsection title>
^^^^^^^^^^^^^^^^^^^^^

<And even subsubsections.>

Voting History
--------------

<Voting Records or "N/A">

:Motion: <Text of the motion>
:Voting Start: <YYYY-MM-DD>
:Voting End: <YYYY-MM-DD>
:Result: <Result>

Traceability
------------

:Requirements: <links to requirements or "N/A">
:Tickets: <links to tickets or "N/A">








Template for RFC Discussion Pages

RFC Discussion pages shall have the URL
http://eoxserver.org/wiki/DiscussionRfc<number>. They shall be
referenced on the page http://eoxserver.org/wiki/RfcDiscussions.

= Discussion Page RFC <number>: <title> =

'''RFC <number>:''' [<link>]

== Template Comment ==

<comment text>

''Author: <author name> | Created: <date and time of creation: YYYY-MM-DD HH:MM:SS>''
----

== Discussion ==











          

      

      

    

  

  
    
    
    RFC 0: Project Steering Committee Guidelines
    
    

    
 
  
  

    
      
          
            
  
RFC 0: Project Steering Committee Guidelines





	Author:	Stephan Meißl


	Created:	2011-03-02


	Last Edit:	2011-05-17


	Status:	ACCEPTED


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc0






Overview

This RFC documents the EOxServer Project Steering Committee Guidelines.

(Credit: Inspired by the MapServer PSC guidelines at:
http://mapserver.org/development/rfc/ms-rfc-23.html)




Introduction

This RFC describes how the EOxServer Project Steering Committee (PSC) handles
membership and makes decisions on all aspects, technical and non-technical, of
the EOxServer project.

The PSC duties include:


	defining and deciding on the overall development road map

	defining and deciding on technical standards and policies like file naming
conventions, coding standards, etc.

	establishing a regular release cycle

	reviewing and voting on RFCs



The PSC members vote on proposals, RFCs, etc. via e-mail on the dev
mailing list. Proposals shall be available for review for at least two days
where a single veto delays the progress but at the end a majority of members
may adopt a proposal.




Voting


Voting Procedure

The following steps shall be followed in any voting:


	Any interested person may submit a proposal to the dev mailing list for
discussion. Note that this is explicitly not limited to PSC members.

	Voting on proposals shall not be closed earlier than two business days after
the proposal has been submitted.

	The following voting options shall be used:
	“+1” .. support willingness to support implementation

	“+0” .. low support

	“0” .. no opinion

	“-0” .. low disagreement

	“-1” .. veto





	A veto shall include clear reasoning and alternative approaches to solve the
problem at hand.

	Any interested person may comment on proposals but only votes from PSC
members will be counted.

	A proposal may be declared accepted if it receives at least +2 and not
vetoes (-1).

	Vetoed proposals that cannot be revised to satisfy all PSC members may be
submitted for an override vote. The proposal may be declared accepted if a
simple majority of eligible voters votes in favor (+1). Eligible voters are
all PSC members that have not been declared inactive. However, it is
intended that in normal circumstances vetoers are convinced to withdraw
their veto. We are trying to reach consensus.

	Any eligible voter who has not cast a vote in the last two votes shall be
considered inactive. Casting a vote immediately turns the status to active.

	Upon completion of discussion and voting the author shall announce the new
status of the proposal (accepted, withdrawn, rejected, postponed, obsolete).

	The PSC Chair is responsible for keeping track of who is a member of the PSC
Membership.

	Addition and removal of members from the PSC, as well as selection of a Chair
should be handled as a proposal to the PSC.

	The PSC Chair adjudicates in cases of disputes about voting.






Voting is Required for


	any change to committee membership (adding members, removing inactive
members).

	creating and dissolving of sub-committees (e.g. to manage conferences,
documentation, or web sites).

	changes to project infrastructure (e.g. tool, location, or substantive
configuration).

	anything that could cause backward compatibility issues.

	adding substantial amounts of new code.

	changing inter-subsystem APIs, or objects.

	issues of procedure.

	when releases should take place.

	anything dealing with relationships with external entities such as
MapServer or OSGeo.

	anything that might be controversial.








PSC Membership

The PSC is made up of individuals consisting of technical contributors
(e.g. developers) and prominent members of the EOxServer user community.
There is no fixed number of members for the PSC.


Adding Members

Any member of the dev mailing list may nominate someone for committee
membership at any time. Only existing PSC committee members may vote on new
members. Nominees must receive a majority vote from existing members to be
added to the PSC.




Stepping Down

If, for any reason, a PSC member is not able to fully participate then they
certainly are free to step down. If a member is not active (e.g. no
voting, no IRC, or e-mail participation) for a period of two months then
the committee reserves the right to vote to cease membership.
Should that person become active again then they are certainly welcome, but
require a nomination.






Membership Responsibilities


Guiding Development

Members should take an active role guiding the development of new features
they feel passionate about. Once a change request has been accepted
and given a green light to proceed does not mean the members are free of
their obligation. PSC members voting “+1” for a change request are
expected to stay engaged and ensure the change is implemented and
documented in a way that is most beneficial to users. Note that this
applies not only to change requests that affect code, but also those
that affect the web site, technical infrastructure, policies, and standards.




IRC Meeting Attendance

PSC members are expected to participate in pre-scheduled IRC development
meetings. If known in advance that a member cannot attend a meeting,
the member should let the meeting organizer know via e-mail.




Mailing List Participation

PSC members are expected to be active on both the users and dev mailing lists,
subject to open source mailing list etiquette. Non-developer members of the
PSC are not expected to respond to coding level questions on the developer
mailing list, however they are expected to provide their thoughts and opinions
on user level requirements and compatibility issues when RFC discussions take
place.






List of Members

Charter members are (in alphabetical order):


	Arndt Bonitz

	Peter Baumann

	Stephan Krause

	Stephan Meißl

	Milan Novacek

	Martin Paces

	Fabian Schindler



Stephan Meißl is declared initial Chair of the Project Steering Committee.




Voting History





	Acceptance:	All charter members declared their availability via e-mail to the dev mailing list.








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 1: An Extensible Software Architecture for EOxServer
    
    

    
 
  
  

    
      
          
            
  
RFC 1: An Extensible Software Architecture for EOxServer





	Author:	Stephan Krause


	Created:	2011-02-18


	Last Edit:	2011-07-20


	Status:	ACCEPTED


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc1





This RFC proposes an extensible software architecture for EOxServer that
is based on the following ideas:


	Separation of instance and distribution code

	Structuring of the distribution in layers

	Extensibility through a plugin system




Introduction

EOxServer development has been initiated in the course of two ESA
projects that aim at providing a harmonized standard interface to
access Earth Observation (EO) products, namely:


	Heterogeneous Mission Accessibility - Follow-On Open Data Access
(HMA-FO ODA)

	Open-standard Online Observation Service (O3S)



The specification of a software architecture is required by these
projects. From a practical point of view, EOxServer has reached a point
where a common framework for a rapidly evolving project is needed.

Summarizing the requirements in a nutshell EOxServer has to integrate:


	different OGC Web Services

	different data and processing resources

	heterogeneous data and metadata formats



This leads to the conclusion that an extensible software architecture
is needed. The problems to address are discussed in further detail in
the Requirements section.

The proposed architecture is modular, extensible
and flexible and structured in layers. The following separate components
are identified:


	Distribution
	Distribution Core

	Service Layer

	Processing Layer

	Data Integration Layer

	Data Access Layer





	Instances



In this architecture the Core shall provide the central logic for
the extension mechanism while the layers shall contain interface
definitions based on the extension model of the Core that can be
implemented by extending modules and plugins.




Requirements

The main sources of requirements for EOxServer at the moment of writing
this RFC are:


	the HMA-FO Open Data Access Sofware Requirements Specification (SRS) [http://wiki.services.eoportal.org/tiki-download_wiki_attachment.php?attId=957&download=y]

	the O3S Software System Specification (SSS)

	the feature requests posted on the EOxServer Trac [http://www.eoxserver.org]



Most of the requirements are related to the features EOxServer shall
implement. There is one requirement, however, in the O3S SSS that is
directly related to the software architecture;
O3S_QUA_004 [https://o3s.eox.at/requirements/ticket/122] states:


The O3S3 shall sustain maintainability and reusability by using a
modular system architecture

This shall facilitate


	isolation and removal of code defects

	integration of new functionality, such as the implementation of new
interface standard versions

	extension of the system functionality according to new or modified
requirements






Thus, modularity as well as integration and extension of functionality
are central issues in the drafting of the EOxServer software
architecture. The question remains what considerations shall govern the
structuring of the software into modules, what functionality it shall
implement and in what way the system shall be able to be extended.

Our approach to this question is to identify different topics of concern
for the EOxServer development that shall structure the requirements
analysis and give a first hint on the architectural design.

The main goal of EOxServer is to furnish an implementation of OGC [http://www.opengeospatial.org] Web Services (OWS) intended for use
within the Earth Observation (EO) domain. These services shall provide access to different kinds of
resources and to processes
operating on these resources. The requirements cite different
backends that the software shall implement in
order to allow access to local and remote content. Finally, we discuss
where and how the software is going to be deployed.


Services

The following OGC Web Services shall be implemented:

Web Coverage Service (WCS) [http://www.opengeospatial.org/standards/wcs] (requirement
O3S_CAP_001 [https://o3s.eox.at/requirements/ticket/7])


The Web Coverage Service shall be able to present Earth Observation
data, e.g. optical satellite imagery, SAR data, etc. The following
extensions shall be implemented:

Earth Observation Application Profile for WCS (EO-WCS) (requirement
O3S_CAP_100 [https://o3s.eox.at/requirements/ticket/8])


This application profile is intended to ease access to large
collections of Earth Observation data.


Transactional WCS (WCS-T) (requirement
O3S_CAP_150 [https://o3s.eox.at/requirements/ticket/198])


This extension of WCS introduces a Transaction operation that
supports transfer of data to a WCS server.





Web Map Service (WMS) [http://www.opengeospatial.org/standards/wms]
(requirement
O3S_CAP_220 [https://o3s.eox.at/requirements/ticket/204])


This service shall be used to give to portrayals of the coverages
the system presents. The following extension shall be implemented:

WMS Profile for EO Products (EO-WMS) (requirement
O3S_CAP_240 [https://o3s.eox.at/requirements/ticket/210])


The extension allows access to portrayals of large dataset series.





Web Feature Service (WFS) [http://www.opengeospatial.org/standards/wfs] (requirement
O3S_CAP_260 [https://o3s.eox.at/requirements/ticket/214])


This service shall be used to present vector data.


Web Processing Service (WPS) [http://www.opengeospatial.org/standards/wps] (requirement
O3S_CAP_200 [https://o3s.eox.at/requirements/ticket/9])


This service shall be used to make processing resources accessible
online.





Processes

EOxServer shall present various processes to the public using WPS. The
processes planned for implementation at the moment of writing this RFC
are specific to the use cases to be handled in the course of the O3S
project. The capability to publish a variety of processes on the other
hand is a general requirement for EOxServer.

Being a project focussing on the EO domain EOxServer concentrates on
the processing of EO coverage (raster) data. So, the considerations
made for coverages regarding the variety of data and metadata
formats are valid for processes as well.




Resources

EOxServer shall enable public access to different kinds of geo-spatial
resources in the Earth Observation domain. These are:


	Coverages

	Vector Data

	Processes




Coverages

Coverages are defined in a very abstract way. What EOxServer focusses on
are coverages dealt with by the Earth Observation Application Profile
for WCS (EO-WCS) which is a draft OGC Best Practice Paper as of writing
this RFC. The main categories of resources defined in that paper are:


	Datasets

	Datasets are the atomic components EO-WCS objects are composed of.
They are coverages that are associated with EO Metadata. EO satellite
mission scenes are a good example of Datasets. They can be accessed
individually even when being part of a Stitched Mosaic or Dataset
Series.

	Stitched Mosaics

	Stitched Mosaics are made up from a collection of Datasets that share
a common range type and grid. Other than Dataset Series they are not
merely a container for Datasets but coverages themselves. The coverage
values are generated from the contributing datasets. This process must
follow some rule to decide what value to take into account in the
areas where the contributing Datasets overlap. The most common rule
is “latest-on-top”.

	Dataset Series

	Dataset Series represent collections of Datasets or Stitched Mosaics.
They do not impose any constraints on the contained objects, so very
heterogeneous data can be included in the same series.



A major problem for the EOxServer implementation is that raster data
coverages originating from EO satellite missions are very heterogeneous.
They can use a vide variety of data and metadata formats and are often
associated with additional data like bitmasks, etc. that should be
presented by EOxServer as well. Furthermore, the data packaging is
different for every mission.




Vector Data

Support for Vector Data handling is required by O3S Use Case 2. In that
use case road network data shall be generated from Pléiades satellite
data using automated feature detection algorithms. The road network data
shall be presented using WFS and WMS.






Backends

EOxServer shall implement various backends to access data it presents
to the public via the OGC Web Services:


	Backend for local data (requirement O3S_CAP_013 [https://o3s.eox.at/requirements/ticket/68])

	Backends for remote data (requirements: HMA-FO SR_ODA_IF_070,
O3S_CAP_014 [https://o3s.eox.at/requirements/ticket/69])
	using HTTP/HTTPS

	using FTP

	using WCS





	Backend for retrieving data from rasdaman [http://www.rasdaman.com]
(requirement O3S_CAP_017 [https://o3s.eox.at/requirements/ticket/183])






Deployment

The only requirements originating from the HMA-FO ODA and O3S projects
regarding deployment concern the implementation of the O3S Use Cases.
Every use case requires one or more instances of EOxServer to be
deployed. The instances have different purposes and thus shall present
different services and different resources.

The fact that EOxServer shall be deployed many times in different
configurations (possibly on the same server) calls for a strict
separation of distribution and instance data.

The ability to activate or deactivate various components of the system
implies not only that the architecture must be modular but also that it
must be configurable to use different combinations of modules.




Summary

The conclusion of the requirements review is that the EOxServer
Architecture shall be:


	modular

	extensible

	flexible in the sense that it must be possible to select different
combinations of modules to deploy and activate

	able to present resources using different OGC Web Services

	able to access data from different backends

	able to handle different data, metadata and packaging formats

	separating distribution and instance data



The development of the software architecture will be based on these
considerations.






Architecture Overview

The software architecture development for EOxServer does not start at
zero. There are already considerations made in the proposal phase of
the O3S project and there is the status quo of version 0.1.0. Taking
into account this preparational work and the outcomes of the
requirements review, the outlines of the Proposed Architecture will be
developed in the last subsection and the following sections.


Draft Architecture

The O3S draft Architectural Design Document (ADD/SDD) has already
proposed a software architecture which is, however, outdated in certain
aspects due to changes made in the requirements phase of O3S. Here is an
overview of the O3S draft architecture:


[image: ../_images/O3S_Server_Software_Components.png]
Draft architecture from O3S Proposal



This identifies four servers and extending modules:


	WPS Server

	WCS Server
	WCS Earth Observation Application Profile Module

	WCS-T Module

	WCPS Module (not included in the requirements any more)





	WFS Server
	WFS-T Module (not included in the requirements any more)





	WMS Server
	WMS Profile for EO Products Module







Furthermore the architecture proposes to use PyWPS [http://pywps.wald.intevation.org/] and MapServer [http://www.mapserver.org] as middleware for handling OGC Web Service
requests.

An additional integrating Data Access Layer is foreseen that
shall implement storage patterns such as image pyramids and offer an API
to read and write data that hides the internal details of data storage
from the service and extension modules using it.

PostgreSQL [http://www.postgresql.org] with its geo-spatial extension
PostGIS [http://postgis.refractions.net] has been planned as
relational database backend. Finally, the system relies on the local
filesystem as its only storage backend.

During the requirements phase of O3S and the early development of
EOxServer many deviations from this original design have been made
necessary. Most importantly:


	Django [http://www.djangoproject.com] has been added as dependency

	GDAL [http://www.gdal.org] has been added as dependency

	the implementation of WCPS has been postponed

	the implementation of WFS-T has been postponed

	Django has made use of different geo-spatial database backends possible

	requirements for remote storage backends have been added



Although the basic concepts of the draft architecture remain valid, an
updated version is needed for EOxServer to fulfill its requirements and
evolve beyond the project horizon of O3S.




Status Quo of Release 0.1.1

As of release 0.1.1 EOxServer is an integrated Django project including
a single Django application and additional modules that support OGC Web
Service (OWS) request handling and data integration.

The data model is contained in the eoxserver.server application. So
is the ows view, the central entrance point for OWS requests, and
the administration client view as well as tools for automatic data
ingestion.

Supporting modules are gathered in the eoxserver.lib module. These
contain the core application logic for OWS request handling, coverage
and metadata manipulation as well as utilities e.g. for XML processing.

EOxServer 0.1.1 includes an extension mechanism already which so far is
restricted to services. The eoxserver.lib.registry module maintains
a central registry for the concrete implementations of OWS interfaces
which may be published in the eoxserver.modules namespace. At the
moment there are implementations for WMS 1.0, 1.1 and 1.3, WCS 1.0, 1.1
and 2.0 as well as a preliminary version of EO-WCS. All these modules
use MapServer MapScript for image manipulation and part of the request
handling in the backend.

This approach fulfills some of the requirements summarized above already, but further development of the architecture
and the code is necessary to be fully compliant. Most
importantly:


	extensibility and flexibility have to be enhanced

	WPS must be implemented

	WFS must be implemented

	support for remote backends is necessary






Proposed Architecture

The proposed architecture for EOxServer shall be based on the following
principles:


	Separation of Instance and Distribution: instance applications
shall be separated from EOxServer distribution code in order to
facilitate deployment of multiple services on the same machine and to
support flexible configurations of services

	Layered Architecture of the Distribution: The software
architecture shall be structured in layers and a core that contains
basic common functionality; each layer builds on the capabilities of
the underlying ones to fulfill its tasks

	Extensibility: the EOxServer distribution shall be extensible by
additional modules and plugins; the distribution core shall provide
functionality to enable dynamic binding to extending modules



The identification of different layers is performed based on the
structuring of the system components underlying the requirements
analysis.


Dependencies

The implementation of EOxServer shall use the following
dependencies:


	Python: Python [http://www.python.org] shall serve as the
implementation language; it has been chosen because
	it facilitates rapid development

	the geospatial libraries used all have Python bindings





	Django: Django [http://www.djangoproject.com] has been
selected as development framework because
	it provides an object-relational mapper that supports various
database backends

	it supports geospatial databases and integrates vector data handling
functionality in the GeoDjango extension

	it allows for rapid web application development





	Spatial Database Backend: using GeoDjango, EOxServer shall support
at least the SpatiaLite [http://www.gaia-gis.it/spatialite/] and
PostGIS [http://postgis.refractions.net] geospatially enabled
RDBMS backends.

	MapServer: EOxServer shall build on MapServer [http://www.mapserver.org] MapScript in order to facilitate OGC
Web Service handling

	GDAL/OGR: For image processing tasks and vector data manipulation
the Python binding of the GDAL/OGR [http://www.gdal.org] libraries
shall be used



Concerning the software architecture, the use of Django enforces a
Model-View-Controller (MVC) substructure of the distribution layers of
EOxServer.




Distribution Core and Layers

The breakdown of the distribution into core and layers is as follows:


	Core

	The Core shall contain modules for common use throughout the different
components of EOxServer. This includes the global configuration data
model, the implementation of the extension mechanism as well as the
basic functionality for the EOxServer administration client

	Service Layer

	This layer contains the core request handling logic as well as the
implementation of services and service extensions

	Processing Layer

	This layer contains the processing models used internally by EOxServer
as well as the data model and the basic handling routines for
processes to be published using WPS

	Data Integration Layer

	This layer shall provide data models for resources as well as an
abstraction layer for different data formats and data packaging
formats

	Data Access Layer

	This layer shall provide backends for local and remote data access




[image: ../_images/EOxServer_Distribution_Breakdown.png]
EOxServer Distribution Breakdown



Each of the four layers shall be sub-structured in:


	data model

	views
	for public access (if applicable)

	for the administration client





	core handling logic

	interface definitions for extensions

	modules implementing the interface definitions






Structure of the Architecture Specification

The further specification of the proposed architecture is subdivided
into several sections and separate RFCs. This RFC 1 contains a
description of the different architectural layers and of EOxServer
instances:


	Distribution Core

	Service Layer

	Processing Layer

	Data Integration Layer

	Data Access Layer

	Instances



The following RFCs discuss different aspects of the architecture in
further detail:



	RFC 2: Extension Mechanism for EOxServer

	RFC 3: OGC Service Extensions

	RFC 4: Data Packaging

	RFC 5: Processing Chains

	RFC 6: Directory Structure












Distribution Core

The Core shall act as a “glue” for EOxServer that links the different
parts of the software together and provides functionality used
throughout the EOxServer project.

It defines the core of the configuration data model which is extended
by the layers and implementing modules. The configuration is partly
stored in the database and partly in files. Both parts need to be
easily modifiable and extensible.

Therefore the Core also includes an administration client that can be
used by system operators to edit the part of the configuration
stored in the database. The basic functionality of the administrator,
the entry view and its extension mechanisms shall be part of the Core.

The Core includes modules for common use, for instance utilities for the
handling of spatio-temporal metadata as well as for decoding and
encoding of XML documents.

Most importantly, the Core contains the central logic that enables the
dynamic extension of system functionality. The layers shall provide
interface definitions based on the extension model of the Core that can
be implemented by extending modules and plugins. For more details see
RFC 2: Extension Mechanism for EOxServer.




Service Layer

The Service Layer contains the OWS request handling logic as well as the
implementation of services and service extensions.

It defines a configuration data model for OGC Web Services and for
their metadata. The model includes:


	service metadata to be published in the GetCapabilities response

	options to enable or disable a specific service or service extension
for a given data source

	options to configure the services themselves, e.g. enabling or
disabling certain non-mandatory features



The Service Layer provides views for public access, namely the
central entrance point for OWS requests. It also contains views for the
administration client that allow to configure services and service
metadata.

The core handling logic for OGC Web Services is part of the Service
Layer. It implements the behaviour defined by OWS Common and defines
a structured approach to request handling that discerns different
levels:


	services

	service versions

	service extensions

	service operations



The way services and service extensions interact is described in further
detail in RFC 3: OGC Service Extensions.

The Service Layer defines request handler interfaces for each of
these levels that are implemented by modules for:


	WPS

	WCS
	EO-WCS

	WCS-T





	WMS
	EO-WMS





	WFS






Processing Layer

The Processing Layer contains the processing models used internally by
EOxServer as well as the data model and the basic handling routines for
processes to be published using WPS.

In its data model it defines the configuration options and metadata
for processes. The model shall also support processing chains as
described in further detail in RFC 5: Processing Chains. The Processing Layer
publishes administration client views to support the configuration
of processes and processing chains.

The Processing Layer defines interfaces for processes. It also
contains implementations of the processes used internally by EOxServer;
these include:


	coverage tiling

	coverage mosaicking



Further processes as required e.g. by the O3S Use Cases will be added as
plugins based on the data model and interface definitions of the
Processing Layer.




Data Integration Layer

The Data Integration Layer shall provide data models for resources as
well as an abstraction layer for different data formats and data
packaging formats.

Data packaging formats are explained in greater detail in RFC 4: Data Packaging.
Roughly speaking, they represent the way data and metadata for an
EO product or derived product are packaged. They shall abstract from the
actual substructure of the packaging format in directories and files
so these resources can be handled transparently by EOxServer.

Its data model shall include items common to all types of data as
well as individual models for:


	coverages

	vector data

	metadata



Just as the other layers the Data Integration Layer shall publish
administration client views that support adding, modifying and
removal of resources and their respective metadata.

The interface definitions of the Data Integration Layer shall
provide an abstraction layer for:


	various data formats

	various metadata formats

	various data packaging formats



The modules implementing these interfaces shall support:


	coverage data formats supported by:
	GDAL [http://www.gdal.org]

	NEST [http://www.array.ca/nest] (optional)





	vector data formats supported by OGR [http://www.gdal.org/ogr/]

	metadata formats:
	EO-GML

	DIMAP (optional)

	INSPIRE (optional)

	GSC-DA (optional)





	data packaging formats:
	directories

	ZIP archives

	TAR archives

	compressed file formats:
	ZIP

	GZIP

	BZ2














Data Access Layer

The Data Access Layer shall provide transparent access to local and
remote data using different backends. It constitutes an abstraction
layer for data sources.

Its data model therefore provides configuration options for the
backends. It contains views for the administration client to
configure different data sources.

The Data Access Layer is built around the interface definitions of
backends and data sources stored by them. The following backends need to
be implemented:


	local backends:
	file system

	rasdaman [http://www.rasdaman.com] backend





	remote backends:
	using HTTP/HTTPS

	using FTP

	using WCS










Instances

EOxServer instances are Django projects that import different EOxServer
modules as Django applications.

Like every Django project they contain a settings file that governs
the Django configuration and in addition the most basic parts of
EOxServer configuration. Specifically:


	the connection details for the database containing the EOxServer
configuration is defined in the settings file

	the Django INSTALLED_APPS setting must be used to define the
parts of the EOxServer data model that shall be loaded

	some EOxServer configuration settings that are needed in the startup
phase will be appended to the Django settings file



Apart from the settings, every Django project has an “urlconf” that
defines which URLs shall point to the different views of the project.
For using the full EOxServer functionality there have to be URLs
pointing to the Service Layer OWS entrance point and the administration
client entrance point defined by the EOxServer core.

Furthermore the instance contains the Django configuration files whose
content is defined by the configuration data model of the Core and the
layers.

Optionally, the instance directory may include subdirectories for the
data (if stored locally) and the database (if using the file-based
SpatiaLite spatial database backend).

Finally, in a production setting, it shall contain the modules needed to
deploy the instance. The favourite deployment method is WSGI (see
PEP 333 [https://www.python.org/dev/peps/pep-0333]). These must be configured as well to include the path to the
instance.

The Django project may or may not contain applications itself, which
may or may not use EOxServer functionality. Writing an own application
is not necessary to use EOxServer, though; placing links to EOxServer
views in the urlconf is sufficient.




Voting History

Moved to ACCEPTED by unanimous consent without a formal vote on July
20th, 2011.




Traceability





	Requirements:	HMA-FO SR_ODA_IF_070,
O3S_CAP_001 [https://o3s.eox.at/requirements/ticket/7],
O3S_CAP_013 [https://o3s.eox.at/requirements/ticket/68],
O3S_CAP_014 [https://o3s.eox.at/requirements/ticket/69],
O3S_CAP_017 [https://o3s.eox.at/requirements/ticket/183],
O3S_CAP_100 [https://o3s.eox.at/requirements/ticket/8],
O3S_CAP_150 [https://o3s.eox.at/requirements/ticket/198],
O3S_CAP_200 [https://o3s.eox.at/requirements/ticket/9],
O3S_CAP_220 [https://o3s.eox.at/requirements/ticket/204],
O3S_CAP_240 [https://o3s.eox.at/requirements/ticket/210],
O3S_CAP_260 [https://o3s.eox.at/requirements/ticket/214],
O3S_QUA_004 [https://o3s.eox.at/requirements/ticket/122]


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 2: Extension Mechanism for EOxServer
    
    

    
 
  
  

    
      
          
            
  
RFC 2: Extension Mechanism for EOxServer





	Author:	Stephan Krause


	Created:	2011-02-20


	Last Edit:	2011-09-15


	Status:	ACCEPTED


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc2





This RFC proposes an extension mechanism that allows to integrate
extension modules and plugins dynamically into the EOxServer
distribution and instances.


Introduction

RFC 1: An Extensible Software Architecture for EOxServer proposes an extensible architecture for EOxServer in order
to ensure


	modularity

	extensibility

	flexibility



of the design. It establishes the need for an extension mechanism which
acts as a sort of “glue” between different parts of the architecture
and enables dynamic binding to these components.

This RFC discusses the extension mechanism in further detail and
identifies the architectural principles and components needed to
implement it.

The constituent components of the extension mechanism design are
interface declarations, the respective implementations and a central
registry that contains metadata about interfaces and implementations
and enables dynamic binding to the latter ones.




Requirements

RFC 1: An Extensible Software Architecture for EOxServer proposes an extension mechanism for EOxServer. It shall
assure extensibility by additional modules and plugins and provide
functionality to enable dynamic binding to extending modules.

In the layered architecture of RFC 1 the Distribution Core shall be the
place where the central logic that enables the dynamic extension of
system functionality resides. The layers shall provide interface
definitions based on the extension model of the Core that can be
implemented by extending modules and plugins.

Now which extensions are needed and which requirements do they impose on
the extension mechansims? Digging deeper we have a look at the four
architectural layers of EOxServer and analyze the interfaces and
implementations needed by each of them.

The Service Layer defines a structured approach to OGC Web Service
(OWS) request handling that discerns different levels:


	services

	service versions

	service extensions

	service operations



For all of these levels interfaces are defined that are implemented by
extending modules for specific OWS and their different versions and
extensions.

The Processing Layer defines interfaces for processes and processing
chains (see RFC 5: Processing Chains). Some of these are used internally and
integrated into the distribution, most will be provided by plugins.
While the process interface needs to be generic in order to make the
implementation of many different processes possible, it must be concise
enough to allow binding between processes in a processing chain. So,
this must be sustained by the extension mechanism as well.

The Data Integration Layer shall provide an abstraction layer for
different data formats, metadata formats and data packaging formats.
This shall be achieved using common interfaces for coverage data, vector
data and metadata respectively.

Data and packaging formats are often not known by the system before
ingesting a dataset. Thus, some kind of autodetection of formats is
necessary. This is provided partly by the underlying
libraries such as GDAL [http://www.gdal.org], but shall also be
considered for the design of the extension mechanism: it must be
possible to dynamically bind to the right data, metadata and data
packaging format based on evaluations of the data. These tests should be
implemented by format extensions and supported by the extension
mechansim.

The Data Access Layer is built around the interface definitions of
backends and data sources stored by them.

In addition to modularity and extensibility RFC 1 states that the
system shall be


flexible in the sense that it must be possible to select different
combinations of modules to deploy and activate


Modules can be combined to build a specific application. From a user
perspective it is essential to be able to activate and deactivate
services, service versions and service extensions globally
and/or separately for each resource or process. The same applies for
other extensible parts of the system such as backends.

The O3S Use Case 2 for instance requires a server setup that consists of:


	local and WCS backends in the Data Access Layer

	a specific combination of coverage, vector data, metadata and
packaging formats in the Data Integration Layer

	a feature detection process in the Processing Layer

	WPS and WFS implementations in the Service Layer



All other backends, services and processes shall be disabled.

Summarizing the requirements the extension mechanism shall support:


	extensibility by additional modules and plugins

	dynamic binding

	interface definitions for extensions

	implementations that can be enabled or disabled
	globally

	per resource or per process





	modules that can be configured dynamically to build an application

	autodetection of data, metadata and data packaging formats






Extension Mechanism

The basic questions for the design of the extension mechanism are:


	how to declare extensible interfaces

	how to design implementations of these interfaces

	how to advertise them

	how to bind to them



Unlike Java or C++, Python does not have a built-in mechanism to
declare interfaces. A method definition always comes with an
implementation. With Python 2.6 support for abstract base classes and
abstract methods was added, but at the moment it is not an option to use
this framework as this would break support for earlier Python versions.

So, two basic design options remain:


	using conventional Python classes and inheritance mechanisms for
interfaces and implementations

	customize the interface declaration and implementation creation using
Python metaclasses



Whereas the first approach is easier, the second one can provide more
control and a clear differentiation between interface declaration
and implementation. Both design options are discussed in further detail
in the Interfaces and Implementations section below.

The second major topic is how to find and bind to implementations of an
interface if not all implementations are known to the system a priori,
as is the case with plugins. Some “glue” is needed that holds the
system together and allows for dynamic binding. In the case of EOxServer
this is implemented by a central registry that keeps track of
implementations by automatically scanning Python modules in certain
directories that are supposed to contain EOxServer extending modules or
plugins. For more details on the basics of Registry see
below.

In most cases an instance of EOxServer will not need all the
functionality provided by the distribution or plugins installed on the
system. Dynamic binding allows for enabling and disabling certain
services, processes, formats, backends and plugins in an interactive
way using the administration client. In order to assure this required
functionality a configuration data model is needed that allows to store
information about what parts of the system are activated and what
resources they may operate on. See the section Data Model for
further details.

Implementations of interfaces are not isolated objects. They depend on
libraries, functionality provided by the EOxServer core and layers and,
last but not least, on other interface implementations. In order to
assure that the dynamically configurable system is in a consistent
state, the interdependencies between implementations need to be
properly advertised and stored in the configuration data model.

After this short overview, we will go more in depth in the following
sections.




Interfaces and Implementations

As already discussed before there are two design options for interfaces
and implementations:


	interfaces and implementations as conventional Python classes that
are linked through inheritance

	interfaces as special Python classes that are linked to
implementations by a custom mechanism.



Whereas the first approach is straightforward and easy to implement and
handle it has also some serious drawbacks. Most importantly it does
not allow for a clear separation between interface declaration and
implementation. A method declared in the interface always must contain
an implementation, and an implementation may change the signature of the
methods it implements in any possible way.

What’s more, as the implementation inherits (mostly generic) method
code from the interface there is no way to validate if it actually
defines concrete methods to override the “abstract” ones the interface
class provides.

So, there are also good reasons for the second approach although it is
more challenging for developers. The approach proposed here allows to
customize class generation and inheritance enabling validation at
“compile time” (i.e. when classes are created) and runtime (i.e. when
instance methods are invoked) as well as separation of interface
definition from implementation.

How can this be achieved? The proposed mechanism relies on an
interface base class called Interface that concrete interface
declarations can derive from, implementing code contained in a
conventional Python class and a method called implement() that
generates a special  implementation class from the interface declaration
and the class containing the implementing code.


Interface Declaration

It has already been said that interface declarations shall derive from
a common base class called Interface. But that is not the end of the
story - one big question remains: how to declare actual methods without
implementation? The proposed approach is not to declare methods as such
at all, but use classes representing them instead.

For this end three classes are to be defined alongside the Interface
base class.


	instances of the Constant class represent constants defined by
the interface

	instances of the Method class represent methods

	instances of the Arg class represent method arguments; subclasses
of Arg allow for type validation, e.g. instances of IntArg
represent integer arguments



Let’s have a look at a quick example:

from eoxserver.core.interfaces import Interface, Method, Arg

class ServiceInterface(Interface):
    handle = Method(
        Arg("req")
    )






Note

Code examples in this RFC are merely informational. The actual
implementation may deviate a little bit from them. A reference
documentation will be prepared for the definitive extension
mechanism.



This snippet of Python code represents a simple and complete interface
declaration. The ServiceInterface class will be used in further
examples as well. It shows a method definition that declares the
following: the method handle shall take one argument of arbitrary
type named req that stands for an OWS request.

As you can see the declaration is a class variable containing an
instance of the Method class. It is not a method (it does not even
have to be callable). It serves two purposes:


	documentation of the interface

	validation of the implementation



Thinking of these two goals, the writer of the code could have been more
rigorous and declare an argument like this:

handle = Method(
    ObjectArg("req", arg_class=OWSRequest)
)





That way it is documented what kind of argument is expected. When
defining the implementation it is enforced that it have a method
handle which takes exactly one argument besides self, otherwise
an exception will be raised. When invoking an interface of the
implementation it can be validated that the argument is of the right
type. More on this later under Validation of Implementations. Now let’s have a
look at implementations.




Implementations

The proposed design of interface implementation intends to hide all the
complexity of this process from the developers of implementations. They
just have to write an implementing class which is a normal new-style
Python class, and wrap it with the implement() method of the
interface, such as in the following example:

from eoxserver.services.owscommon import ServiceInterface

class WxSService(object):

    def handle(self, req):

        # ...

        return response

WxSServiceImplementation = ServiceInterface.implement(WxSService)





The call to implement() ensures validation of the interface and
produces an implementation class that inherits all the code of the
implementing class and contains information about the interface. This is
only the basic functionality of the interface implementation process:
more is to be revealed in the following sections.




Validation of Implementations

The validation of implementations is performed in two ways:


	at class creation time

	at instance method invocation time



Validation at class creation time checks:


	if all methods declared by the interface are implemented

	if the method arguments of the interface and implementation match



Class creation time validation is performed unconditionally.

Instance method invocation time (“runtime”) validation is optional. It
can be triggered by the runtime_validation_level setting. There are
three possible values for this option:


	trust: no runtime validation

	warn: argument types are checked against interface declaration;
in case of mismatch a warning is written to the log file

	fail: argument types are checked against interface declaration;
in case of mismatch an exception is raised



The runtime_validation_level option can be set



	globally (in configuration file)

	per interface

	per implementation






where stricter settings override weaker ones.


Note

The warn and fail levels are intended for use
throughout the development process. In a production setting trust
should be used.








Registry

The Registry is the core component for managing the extension mechanism
of EOxServer. It is the central entry point for:


	automated detection of registered interfaces and implementations

	dynamical binding to the implementations

	configuration of components and relations between them



Its functionality shall be discussed in further detail in the following
subsections:


	Data Model

	Detection

	Binding




Data Model

The data model for the Extension Mechanism including dynamic binding is
implemented primarily by the Registry; for persistent
information it relies on the configuration files and the database.

As you’d expect, the Registry data model relies on interfaces and
implementations. However, not all of them are registered, but only
descendants of RegisteredInterface and their respective
implementations. RegisteredInterface extends the configuration
model for interfaces with information relevant to the registration and
dynamic binding processes. This is an example for a valid
configuration:

from eoxserver.core.registry import RegisteredInterface

class SomeInterface(RegisteredInterface):

    REGISTRY_CONF = {
        "name": "Some Interface",
        "intf_id": "somemodule.SomeInterface",
        "binding_method": "direct"
    }





The most important parts are the interface ID intf_id and the
binding_method settings which will be used by the registry to find
implementations of the interface and to determine how to bind to them.
For more information see the Binding section below.

The registry model is accompanied by a database model that allows to
store persistently which parts of the system (services, plugins, etc.)
are enabled and which resources they have access to.


[image: ../_images/model_core.png]
Database Model for the Registry



For every registered implementation an Implementation instance
and database record are created. Implementations are subdivided into
components and resource classes, each with their respective model
deriving from Implementation. Components stand for the active
parts of the system like Service Handlers. They can be enabled or
disabled. Resource classes relate to a specific resource wrapper which
in turn relate to some specific model derived from Resource.

Furthermore, there is the possibility to create, enable and disable
relations between components and  specific resource instances or
resource classes. These relations are used to determine whether a given
component has access to a given resource or resource class. They allow
to configure the behaviour e.g. of certain services and protect parts
of an EOxServer instance from unwanted access.

As the number of registered components is quite large and as there are
many interdependencies between them and to resource classes specific
Component Managers shall be introduced in order to:


	group them to larger entities which are more easy to handle

	validate the configuration with respect to these interdependencies

	facilitate relation management

	automatically create the needed relations



These managers shall implement the common
ComponentManagerInterface.




Detection

The first step in the dynamic binding process provided by the registry
is the detection of interfaces and implementations to be registered.
For this end the registry loads the modules defined in the configuration
files and searches them for descendants of RegisteredInterface
and their implementations. The metadata of the detected interfaces and
implementations (the contents of``REGISTRY_CONF``) is ingested into the
registry. This metadata is used for binding to the implementations,
see the following subsection Binding for details.

The main EOxServer configuration file eoxserver.conf contains
options for determining which modules shall be scanned during the
detection phase. The user can define single modules and whole
directories to be searched for modules there.




Binding

The registry provides four binding methods:


	direct binding

	KVP binding

	test binding

	factory binding



Direct binding means that the implementation to bind to is directly
referenced by the caller using its implementation ID:

from eoxserver.core.system import System

impl = System.getRegistry().bind(
    "somemodule.SomeImplementation"
)





Direct binding is available for every implementation. You can also set
the binding_method in the REGISTRY_CONF of an interface to
direct, meaning that its implementations are reachable only by
this method. This is used e.g. for component managers and factories.

The easiest method for parametrized dynamic binding is key-value-pair
matching, or KVP binding. It is used if an interface defines kvp as
its binding_method. The interface must then define in its
REGISTRY_CONF one or more registry_keys, the implementations
in turn must define registry_values for these keys. When looking
up a matching implementation, the parameters given with the request
are matched against these key-value-pairs. Finally, the registry returns
an instance of the matching implementation:

from eoxserver.core.system import System

def dispatch(service_name, req):

    service = System.getRegistry().findAndBind(
        intf_id = "services.interfaces.ServiceHandler",
        params = {
            "services.interfaces.service": service_name.lower()
        }
    )

    response = service.handle(req)

    return response





This binding method is used e.g. for binding to service, version
and operation handlers for OGC Web Services based on the parameters
sent with the request.

A more flexible way to determine which implementation to bind to is
the test binding method ("binding_method": "testing"). In this case,
the interface must be derived from TestingInterface. The
implementation must provide a
test() method which will be
invoked by the registry in order to determine if it is suitable for a given set
of parameters. This can be used e.g. to determine which format handler
to use for a given dataset:

from eoxserver.core.system import System

format = System.getRegistry().findAndBind(
    intf_id = "resources.coverages.formats.FormatInterface",
    params = {
        "filename": filename
    }
)

...





The fourth binding method is factory binding (
"binding_method": "factory"). In this case the registry invokes a
factory that returns an instance of the desired implementation.
Factories must be implementations of a descendant of
FactoryInterface. Implementations and factories are linked
together only at runtime, based on the metadata collected during the
detection phase. This binding method is used e.g. for binding to
instances of a resource wrapper:

from eoxserver.core.system import System

resource = System.getRegistry().getFromFactory(
    factory_id = "resources.coverages.wrappers.SomeResourceFactory",
    obj_id = "some_resource_id"
)





In order to access other functions of the factory you can bind to it
directly. For retrieving all resources that are accessible through a
factory you would use code like this:

from eoxserver.core.system import System

resource_factory = System.getRegistry().bind(
    "resources.coverages.wrappers.SomeResourceFactory"
)

resources = resource_factory.find()










Voting History





	Motion:	To accept RFC 2


	Voting Start:	2011-07-25


	Voting End:	2011-09-15


	Result:	+6 for ACCEPTED








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 3: OGC Service Extensions
    
    

    
 
  
  

    
      
          
            
  
RFC 3: OGC Service Extensions





	Author:	Stephan Krause


	Created:	2011-02-20


	Last Edit:	2011-02-20


	Status:	IN PREPARATION


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc3





<short description of the RFC>


Introduction


	<Mandatory. Overview of motivation, addressed problems and proposed

	solution>






Voting History

N/A




Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 4: Data Packaging
    
    

    
 
  
  

    
      
          
            
  
RFC 4: Data Packaging





	Author:	Stephan Krause


	Created:	2011-02-20


	Last Edit:	2011-02-25


	Status:	IN PREPARATION


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc4





<short description of the RFC>


Introduction


	<Mandatory. Overview of motivation, addressed problems and proposed

	solution>






Voting History

N/A




Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 5: Processing Chains
    
    

    
 
  
  

    
      
          
            
  
RFC 5: Processing Chains





	Author:	Stephan Krause


	Created:	2011-02-23


	Last Edit:	2011-03-01


	Status:	IN PREPARATION


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc5





<short description of the RFC>


Introduction


	<Mandatory. Overview of motivation, addressed problems and proposed

	solution>






Voting History

N/A




Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 6: Directory Structure
    
    

    
 
  
  

    
      
          
            
  
RFC 6: Directory Structure





	Author:	Stephan Krause


	Created:	2011-02-24


	Last Edit:	2011-09-15


	Status:	ACCEPTED


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc6





This RFC proposes a directory structure for the EOxServer distribution
as well as EOxServer instances.


Introduction

RFC 1: An Extensible Software Architecture for EOxServer introduces a layered architecture for EOxServer as well as
a separation of EOxServer distribution and instances. This RFC lays
out a directory structure that is in line with this architecture.




Directory Structure


Distribution



	core: contains the modules of the Core
	util: contains utility modules to be used throughout the
project





	services: contains the modules of the Service Layer
	ows: contains implementations of OGC Web Services





	processing: contains the modules of the Processing Layer
	processes: contains processes





	resources: contains the modules of the Data Integration Layer
	coverages: contains the modules related to coverage resources
	formats: contains the modules related to coverage formats





	vector: contains the modules related to vector data
	formats: contains the modules related to vector data formats









	contrib: contains (links to) third party modules

	conf: contains the default configuration









Instance

The instance directory contains the three Django project modules:



	settings.py

	manage.py

	urls.py






And the following subdirectories



	conf: configuration files
	eoxserver.conf: the central EOxServer configuration

	template.map: template MapFile for OWS requests





	data: database files
	config.sqlite: SQLite database















Voting History





	Motion:	To accept RFC 6


	Voting Start:	2011-07-25


	Voting End:	2011-09-15


	Result:	+6 for ACCEPTED








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 2: Extension Mechanism for EOxServer
    
    

    
 
  
  

    
      
          
            
  
RFC 2: Extension Mechanism for EOxServer





	Author:	Stephan Krause


	Created:	2011-02-20


	Last Edit:	2011-09-15


	Status:	ACCEPTED


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc2





This RFC proposes an extension mechanism that allows to integrate
extension modules and plugins dynamically into the EOxServer
distribution and instances.


Introduction

RFC 1: An Extensible Software Architecture for EOxServer proposes an extensible architecture for EOxServer in order
to ensure


	modularity

	extensibility

	flexibility



of the design. It establishes the need for an extension mechanism which
acts as a sort of “glue” between different parts of the architecture
and enables dynamic binding to these components.

This RFC discusses the extension mechanism in further detail and
identifies the architectural principles and components needed to
implement it.

The constituent components of the extension mechanism design are
interface declarations, the respective implementations and a central
registry that contains metadata about interfaces and implementations
and enables dynamic binding to the latter ones.




Requirements

RFC 1: An Extensible Software Architecture for EOxServer proposes an extension mechanism for EOxServer. It shall
assure extensibility by additional modules and plugins and provide
functionality to enable dynamic binding to extending modules.

In the layered architecture of RFC 1 the Distribution Core shall be the
place where the central logic that enables the dynamic extension of
system functionality resides. The layers shall provide interface
definitions based on the extension model of the Core that can be
implemented by extending modules and plugins.

Now which extensions are needed and which requirements do they impose on
the extension mechansims? Digging deeper we have a look at the four
architectural layers of EOxServer and analyze the interfaces and
implementations needed by each of them.

The Service Layer defines a structured approach to OGC Web Service
(OWS) request handling that discerns different levels:


	services

	service versions

	service extensions

	service operations



For all of these levels interfaces are defined that are implemented by
extending modules for specific OWS and their different versions and
extensions.

The Processing Layer defines interfaces for processes and processing
chains (see RFC 5: Processing Chains). Some of these are used internally and
integrated into the distribution, most will be provided by plugins.
While the process interface needs to be generic in order to make the
implementation of many different processes possible, it must be concise
enough to allow binding between processes in a processing chain. So,
this must be sustained by the extension mechanism as well.

The Data Integration Layer shall provide an abstraction layer for
different data formats, metadata formats and data packaging formats.
This shall be achieved using common interfaces for coverage data, vector
data and metadata respectively.

Data and packaging formats are often not known by the system before
ingesting a dataset. Thus, some kind of autodetection of formats is
necessary. This is provided partly by the underlying
libraries such as GDAL [http://www.gdal.org], but shall also be
considered for the design of the extension mechanism: it must be
possible to dynamically bind to the right data, metadata and data
packaging format based on evaluations of the data. These tests should be
implemented by format extensions and supported by the extension
mechansim.

The Data Access Layer is built around the interface definitions of
backends and data sources stored by them.

In addition to modularity and extensibility RFC 1 states that the
system shall be


flexible in the sense that it must be possible to select different
combinations of modules to deploy and activate


Modules can be combined to build a specific application. From a user
perspective it is essential to be able to activate and deactivate
services, service versions and service extensions globally
and/or separately for each resource or process. The same applies for
other extensible parts of the system such as backends.

The O3S Use Case 2 for instance requires a server setup that consists of:


	local and WCS backends in the Data Access Layer

	a specific combination of coverage, vector data, metadata and
packaging formats in the Data Integration Layer

	a feature detection process in the Processing Layer

	WPS and WFS implementations in the Service Layer



All other backends, services and processes shall be disabled.

Summarizing the requirements the extension mechanism shall support:


	extensibility by additional modules and plugins

	dynamic binding

	interface definitions for extensions

	implementations that can be enabled or disabled
	globally

	per resource or per process





	modules that can be configured dynamically to build an application

	autodetection of data, metadata and data packaging formats






Extension Mechanism

The basic questions for the design of the extension mechanism are:


	how to declare extensible interfaces

	how to design implementations of these interfaces

	how to advertise them

	how to bind to them



Unlike Java or C++, Python does not have a built-in mechanism to
declare interfaces. A method definition always comes with an
implementation. With Python 2.6 support for abstract base classes and
abstract methods was added, but at the moment it is not an option to use
this framework as this would break support for earlier Python versions.

So, two basic design options remain:


	using conventional Python classes and inheritance mechanisms for
interfaces and implementations

	customize the interface declaration and implementation creation using
Python metaclasses



Whereas the first approach is easier, the second one can provide more
control and a clear differentiation between interface declaration
and implementation. Both design options are discussed in further detail
in the Interfaces and Implementations section below.

The second major topic is how to find and bind to implementations of an
interface if not all implementations are known to the system a priori,
as is the case with plugins. Some “glue” is needed that holds the
system together and allows for dynamic binding. In the case of EOxServer
this is implemented by a central registry that keeps track of
implementations by automatically scanning Python modules in certain
directories that are supposed to contain EOxServer extending modules or
plugins. For more details on the basics of Registry see
below.

In most cases an instance of EOxServer will not need all the
functionality provided by the distribution or plugins installed on the
system. Dynamic binding allows for enabling and disabling certain
services, processes, formats, backends and plugins in an interactive
way using the administration client. In order to assure this required
functionality a configuration data model is needed that allows to store
information about what parts of the system are activated and what
resources they may operate on. See the section Data Model for
further details.

Implementations of interfaces are not isolated objects. They depend on
libraries, functionality provided by the EOxServer core and layers and,
last but not least, on other interface implementations. In order to
assure that the dynamically configurable system is in a consistent
state, the interdependencies between implementations need to be
properly advertised and stored in the configuration data model.

After this short overview, we will go more in depth in the following
sections.




Interfaces and Implementations

As already discussed before there are two design options for interfaces
and implementations:


	interfaces and implementations as conventional Python classes that
are linked through inheritance

	interfaces as special Python classes that are linked to
implementations by a custom mechanism.



Whereas the first approach is straightforward and easy to implement and
handle it has also some serious drawbacks. Most importantly it does
not allow for a clear separation between interface declaration and
implementation. A method declared in the interface always must contain
an implementation, and an implementation may change the signature of the
methods it implements in any possible way.

What’s more, as the implementation inherits (mostly generic) method
code from the interface there is no way to validate if it actually
defines concrete methods to override the “abstract” ones the interface
class provides.

So, there are also good reasons for the second approach although it is
more challenging for developers. The approach proposed here allows to
customize class generation and inheritance enabling validation at
“compile time” (i.e. when classes are created) and runtime (i.e. when
instance methods are invoked) as well as separation of interface
definition from implementation.

How can this be achieved? The proposed mechanism relies on an
interface base class called Interface that concrete interface
declarations can derive from, implementing code contained in a
conventional Python class and a method called implement() that
generates a special  implementation class from the interface declaration
and the class containing the implementing code.


Interface Declaration

It has already been said that interface declarations shall derive from
a common base class called Interface. But that is not the end of the
story - one big question remains: how to declare actual methods without
implementation? The proposed approach is not to declare methods as such
at all, but use classes representing them instead.

For this end three classes are to be defined alongside the Interface
base class.


	instances of the Constant class represent constants defined by
the interface

	instances of the Method class represent methods

	instances of the Arg class represent method arguments; subclasses
of Arg allow for type validation, e.g. instances of IntArg
represent integer arguments



Let’s have a look at a quick example:

from eoxserver.core.interfaces import Interface, Method, Arg

class ServiceInterface(Interface):
    handle = Method(
        Arg("req")
    )






Note

Code examples in this RFC are merely informational. The actual
implementation may deviate a little bit from them. A reference
documentation will be prepared for the definitive extension
mechanism.



This snippet of Python code represents a simple and complete interface
declaration. The ServiceInterface class will be used in further
examples as well. It shows a method definition that declares the
following: the method handle shall take one argument of arbitrary
type named req that stands for an OWS request.

As you can see the declaration is a class variable containing an
instance of the Method class. It is not a method (it does not even
have to be callable). It serves two purposes:


	documentation of the interface

	validation of the implementation



Thinking of these two goals, the writer of the code could have been more
rigorous and declare an argument like this:

handle = Method(
    ObjectArg("req", arg_class=OWSRequest)
)





That way it is documented what kind of argument is expected. When
defining the implementation it is enforced that it have a method
handle which takes exactly one argument besides self, otherwise
an exception will be raised. When invoking an interface of the
implementation it can be validated that the argument is of the right
type. More on this later under Validation of Implementations. Now let’s have a
look at implementations.




Implementations

The proposed design of interface implementation intends to hide all the
complexity of this process from the developers of implementations. They
just have to write an implementing class which is a normal new-style
Python class, and wrap it with the implement() method of the
interface, such as in the following example:

from eoxserver.services.owscommon import ServiceInterface

class WxSService(object):

    def handle(self, req):

        # ...

        return response

WxSServiceImplementation = ServiceInterface.implement(WxSService)





The call to implement() ensures validation of the interface and
produces an implementation class that inherits all the code of the
implementing class and contains information about the interface. This is
only the basic functionality of the interface implementation process:
more is to be revealed in the following sections.




Validation of Implementations

The validation of implementations is performed in two ways:


	at class creation time

	at instance method invocation time



Validation at class creation time checks:


	if all methods declared by the interface are implemented

	if the method arguments of the interface and implementation match



Class creation time validation is performed unconditionally.

Instance method invocation time (“runtime”) validation is optional. It
can be triggered by the runtime_validation_level setting. There are
three possible values for this option:


	trust: no runtime validation

	warn: argument types are checked against interface declaration;
in case of mismatch a warning is written to the log file

	fail: argument types are checked against interface declaration;
in case of mismatch an exception is raised



The runtime_validation_level option can be set



	globally (in configuration file)

	per interface

	per implementation






where stricter settings override weaker ones.


Note

The warn and fail levels are intended for use
throughout the development process. In a production setting trust
should be used.








Registry

The Registry is the core component for managing the extension mechanism
of EOxServer. It is the central entry point for:


	automated detection of registered interfaces and implementations

	dynamical binding to the implementations

	configuration of components and relations between them



Its functionality shall be discussed in further detail in the following
subsections:


	Data Model

	Detection

	Binding




Data Model

The data model for the Extension Mechanism including dynamic binding is
implemented primarily by the Registry; for persistent
information it relies on the configuration files and the database.

As you’d expect, the Registry data model relies on interfaces and
implementations. However, not all of them are registered, but only
descendants of RegisteredInterface and their respective
implementations. RegisteredInterface extends the configuration
model for interfaces with information relevant to the registration and
dynamic binding processes. This is an example for a valid
configuration:

from eoxserver.core.registry import RegisteredInterface

class SomeInterface(RegisteredInterface):

    REGISTRY_CONF = {
        "name": "Some Interface",
        "intf_id": "somemodule.SomeInterface",
        "binding_method": "direct"
    }





The most important parts are the interface ID intf_id and the
binding_method settings which will be used by the registry to find
implementations of the interface and to determine how to bind to them.
For more information see the Binding section below.

The registry model is accompanied by a database model that allows to
store persistently which parts of the system (services, plugins, etc.)
are enabled and which resources they have access to.


[image: ../_images/model_core.png]
Database Model for the Registry



For every registered implementation an Implementation instance
and database record are created. Implementations are subdivided into
components and resource classes, each with their respective model
deriving from Implementation. Components stand for the active
parts of the system like Service Handlers. They can be enabled or
disabled. Resource classes relate to a specific resource wrapper which
in turn relate to some specific model derived from Resource.

Furthermore, there is the possibility to create, enable and disable
relations between components and  specific resource instances or
resource classes. These relations are used to determine whether a given
component has access to a given resource or resource class. They allow
to configure the behaviour e.g. of certain services and protect parts
of an EOxServer instance from unwanted access.

As the number of registered components is quite large and as there are
many interdependencies between them and to resource classes specific
Component Managers shall be introduced in order to:


	group them to larger entities which are more easy to handle

	validate the configuration with respect to these interdependencies

	facilitate relation management

	automatically create the needed relations



These managers shall implement the common
ComponentManagerInterface.




Detection

The first step in the dynamic binding process provided by the registry
is the detection of interfaces and implementations to be registered.
For this end the registry loads the modules defined in the configuration
files and searches them for descendants of RegisteredInterface
and their implementations. The metadata of the detected interfaces and
implementations (the contents of``REGISTRY_CONF``) is ingested into the
registry. This metadata is used for binding to the implementations,
see the following subsection Binding for details.

The main EOxServer configuration file eoxserver.conf contains
options for determining which modules shall be scanned during the
detection phase. The user can define single modules and whole
directories to be searched for modules there.




Binding

The registry provides four binding methods:


	direct binding

	KVP binding

	test binding

	factory binding



Direct binding means that the implementation to bind to is directly
referenced by the caller using its implementation ID:

from eoxserver.core.system import System

impl = System.getRegistry().bind(
    "somemodule.SomeImplementation"
)





Direct binding is available for every implementation. You can also set
the binding_method in the REGISTRY_CONF of an interface to
direct, meaning that its implementations are reachable only by
this method. This is used e.g. for component managers and factories.

The easiest method for parametrized dynamic binding is key-value-pair
matching, or KVP binding. It is used if an interface defines kvp as
its binding_method. The interface must then define in its
REGISTRY_CONF one or more registry_keys, the implementations
in turn must define registry_values for these keys. When looking
up a matching implementation, the parameters given with the request
are matched against these key-value-pairs. Finally, the registry returns
an instance of the matching implementation:

from eoxserver.core.system import System

def dispatch(service_name, req):

    service = System.getRegistry().findAndBind(
        intf_id = "services.interfaces.ServiceHandler",
        params = {
            "services.interfaces.service": service_name.lower()
        }
    )

    response = service.handle(req)

    return response





This binding method is used e.g. for binding to service, version
and operation handlers for OGC Web Services based on the parameters
sent with the request.

A more flexible way to determine which implementation to bind to is
the test binding method ("binding_method": "testing"). In this case,
the interface must be derived from TestingInterface. The
implementation must provide a
test() method which will be
invoked by the registry in order to determine if it is suitable for a given set
of parameters. This can be used e.g. to determine which format handler
to use for a given dataset:

from eoxserver.core.system import System

format = System.getRegistry().findAndBind(
    intf_id = "resources.coverages.formats.FormatInterface",
    params = {
        "filename": filename
    }
)

...





The fourth binding method is factory binding (
"binding_method": "factory"). In this case the registry invokes a
factory that returns an instance of the desired implementation.
Factories must be implementations of a descendant of
FactoryInterface. Implementations and factories are linked
together only at runtime, based on the metadata collected during the
detection phase. This binding method is used e.g. for binding to
instances of a resource wrapper:

from eoxserver.core.system import System

resource = System.getRegistry().getFromFactory(
    factory_id = "resources.coverages.wrappers.SomeResourceFactory",
    obj_id = "some_resource_id"
)





In order to access other functions of the factory you can bind to it
directly. For retrieving all resources that are accessible through a
factory you would use code like this:

from eoxserver.core.system import System

resource_factory = System.getRegistry().bind(
    "resources.coverages.wrappers.SomeResourceFactory"
)

resources = resource_factory.find()










Voting History





	Motion:	To accept RFC 2


	Voting Start:	2011-07-25


	Voting End:	2011-09-15


	Result:	+6 for ACCEPTED








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 3: OGC Service Extensions
    
    

    
 
  
  

    
      
          
            
  
RFC 3: OGC Service Extensions





	Author:	Stephan Krause


	Created:	2011-02-20


	Last Edit:	2011-02-20


	Status:	IN PREPARATION


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc3





<short description of the RFC>


Introduction


	<Mandatory. Overview of motivation, addressed problems and proposed

	solution>






Voting History

N/A




Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 4: Data Packaging
    
    

    
 
  
  

    
      
          
            
  
RFC 4: Data Packaging





	Author:	Stephan Krause


	Created:	2011-02-20


	Last Edit:	2011-02-25


	Status:	IN PREPARATION


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc4





<short description of the RFC>


Introduction


	<Mandatory. Overview of motivation, addressed problems and proposed

	solution>






Voting History

N/A




Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 5: Processing Chains
    
    

    
 
  
  

    
      
          
            
  
RFC 5: Processing Chains





	Author:	Stephan Krause


	Created:	2011-02-23


	Last Edit:	2011-03-01


	Status:	IN PREPARATION


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc5





<short description of the RFC>


Introduction


	<Mandatory. Overview of motivation, addressed problems and proposed

	solution>






Voting History

N/A




Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 6: Directory Structure
    
    

    
 
  
  

    
      
          
            
  
RFC 6: Directory Structure





	Author:	Stephan Krause


	Created:	2011-02-24


	Last Edit:	2011-09-15


	Status:	ACCEPTED


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc6





This RFC proposes a directory structure for the EOxServer distribution
as well as EOxServer instances.


Introduction

RFC 1: An Extensible Software Architecture for EOxServer introduces a layered architecture for EOxServer as well as
a separation of EOxServer distribution and instances. This RFC lays
out a directory structure that is in line with this architecture.




Directory Structure


Distribution



	core: contains the modules of the Core
	util: contains utility modules to be used throughout the
project





	services: contains the modules of the Service Layer
	ows: contains implementations of OGC Web Services





	processing: contains the modules of the Processing Layer
	processes: contains processes





	resources: contains the modules of the Data Integration Layer
	coverages: contains the modules related to coverage resources
	formats: contains the modules related to coverage formats





	vector: contains the modules related to vector data
	formats: contains the modules related to vector data formats









	contrib: contains (links to) third party modules

	conf: contains the default configuration









Instance

The instance directory contains the three Django project modules:



	settings.py

	manage.py

	urls.py






And the following subdirectories



	conf: configuration files
	eoxserver.conf: the central EOxServer configuration

	template.map: template MapFile for OWS requests





	data: database files
	config.sqlite: SQLite database















Voting History





	Motion:	To accept RFC 6


	Voting Start:	2011-07-25


	Voting End:	2011-09-15


	Result:	+6 for ACCEPTED








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 7: Release Guidelines
    
    

    
 
  
  

    
      
          
            
  
RFC 7: Release Guidelines





	Author:	Stephan Meißl


	Created:	2011-05-04


	Last Edit:	$Date$


	Status:	ACCEPTED


	Discussion:	http://eoxserver.org/wiki/DiscussionRfc7


	Id:	$Id$






Overview

This RFC documents the EOxServer release manager role and the phases of
EOxServer’s release process.

(Credit: Inspired by the MapServer release guidelines at:
http://mapserver.org/development/rfc/ms-rfc-34.html)




The EOxServer Release Manager Role

For every release of EOxServer, the PSC elects a release manager via motion
and vote on the dev mailing list.

The overall role of the release manager is to coordinate the efforts
of the developers, testers, documentation, and other contributors to
lead to a release of the best possible quality within the scheduled
timeframe.

The PSC delegates to the release manager the responsibility and
authority to make certain final decisions for a release, including:


	Approving or not the release of each beta, release candidate, and
final release

	Approving or rejecting non-trivial bug fixes or changes after the
feature freeze

	Maintaining the release schedule (timeline) and making changes as required



When in doubt or for tough decisions (e.g. pushing the release date by
several weeks) the release manager is free to ask the PSC to vote in
support of some decisions, but this is not a requirement for the areas of
responsibility above.

The release manager’s role also includes the following tasks:


	Setup and maintain a release plan wiki page for each release

	Coordinate with the developers team

	Coordinate with the QA/testers team

	Coordinate with the docs/website team

	Keep track of progress via Trac milestones and ensure tickets are properly
targeted

	Organize IRC meetings if needed (including agenda and minutes)

	Tag source code in SVN for each beta, RC, and release

	Branch source code in SVN after the final release (trunk becomes the next
dev version)

	Update version in files for each beta/RC/release

	Package source code distribution for each beta/RC/release

	Update appropriate website/download page for each beta/RC/release

	Make announcements on users and announce mailing lists for each release

	Produce and coordinate bugfix releases as needed after the final release



Any of the above tasks can be delegated but they still remain the ultimate
responsibility of the release manager.




The EOxServer Release Process

The normal development process of a EOxServer release consists of various
phases.


	Development phase

The development phase usually lasts several months. New features are
proposed via RFCs and voted by the EOxServer PSC.



	RFC freeze date

For each release there is a certain date by which all new feature
proposals (RFCs) must have been submitted for review. After this date no
features will be accepted anymore for this particular release.



	Feature freeze date / Beta releases

By this date all features must have been completed and all code has
to be integrated. Only non-invasive changes, user interface work and
bug fixes are done now. There are usually 3 to 4 betas and a couple of
release candidates before the final release.



	Release Candidate

Ideally, the last beta that is bug free. No changes to the code.
Should not require any migration steps apart from the ones required
in the betas. If any problems are found and fixed, a new release
candidate is issued.



	Final release / Expected release date

Normally the last release candidate that is issued without any
show-stopper bugs.



	Bug fix releases

No software is perfect. Once a sufficient large or critical number
of bugs have been found for a certain release, the release manager
releases a new bug fix release a.k.a. third-dot release.








EOxServer Version Numbering

EOxServer’s version numbering scheme is very similar to Linux’s. For
example, a EOxServer version number of 1.2.5 can be decoded as such:


	1: Major version number.

The major version number usually changes when significant new features are
added or when major architectural changes or backwards incompatibilities are
introduced.



	2: Minor version number.

Increments in minor version number almost always relate to additions
in functionality.



	5: Revision number.

Revisions are bug fixes only. No new functionality is provided in revisions.








Voting History





	Motion:	Adopted on 2011-11-16 with +1 from Stephan Meißl, Milan Novacek, Martin Paces








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 8: SVN Commit Management
    
    

    
 
  
  

    
      
          
            
  
RFC 8: SVN Commit Management





	Author:	Stephan Meißl


	Created:	2011-05-04


	Last Edit:	2011-05-18


	Status:	ACCEPTED


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc8






Overview

This RFC documents the EOxServer guidelines for SVN commit access and specifies
some guidelines for SVN committers.

(Credit: Inspired by the MapServer SVN commit management guidelines at:
http://mapserver.org/development/rfc/ms-rfc-7.1.html)




Election to SVN Commit Access

Permission for SVN commit access shall be provided to new developers only
if accepted by the EOxServer Project Steering Committee (PSC). A proposal
should be written to the PSC for new committers and voted on normally. It
is not necessary to write an RFC document for these votes. An e-mail to
the dev mailing list is sufficient.

Removal of SVN commit access should be handled by the same procedure.

The new committer should have demonstrated commitment to EOxServer and
knowledge of the EOxServer source code and processes to the committee’s
satisfaction, usually by reporting tickets, submitting patches, and/or
actively participating in the various EOxServer forums.

The new committer should also be prepared to support any new feature or
changes that he/she commits to the EOxServer source tree in future
releases, or to find someone to which to delegate responsibility for
them if he/she stops being available to support the portions of code
that he/she is responsible for.

All committers should also be a member of the dev mailing list
so they can stay informed on policies, technical developments, and
release preparation.




Committer Tracking

A list of all project committers will be kept in the main eoxserver
directory (called COMMITTERS) listing for each SVN committer:


	Userid: the id that will appear in the SVN logs for this person.

	Full name: the users actual name.

	Email address: A current email address at which the committer can be
reached.  It may be altered in normal ways to make it harder to
auto-harvest.

	A brief indication of areas of responsibility.






SVN Administrator

One member of the PSC will be appointed the SVN Administrator. That person
is responsible for giving SVN commit access to folks, updating the COMMITTERS
file, and other SVN related management. Initially Stephan Meißl will be the
SVN Administrator.




SVN Commit Practices

The following are considered good SVN commit practices for the EOxServer
project.


	Use meaningful descriptions for SVN commit log entries.

	Add a ticket reference like “(#1232)” at the end of SVN commit log entries
when committing changes related to a ticket in Trac.

	Include changeset revision numbers like “r7622” in tickets when discussing
relevant changes to the codebase.

	Changes should not be committed in stable branches without a corresponding
ticket. Any change worth pushing into a stable version is worth a Trac ticket.

	Never commit new features to a stable branch: only critical fixes. New
features can only go in the main development trunk.

	Only ticket defects should be committed to the code during pre-release
code freeze.

	Significant changes to the main development version should be
discussed on the dev maling list before making them, and larger changes will
require an RFC approved by the PSC.

	Do not create new branches without the approval of the PSC. A Release
manager designated under RFC 7: Release Guidelines is automatically granted permission to
create a branch, as defined by their role described in RFC 7: Release Guidelines.

	All source code in SVN should be in Unix text format as opposed to DOS
text mode.

	When committing new features or significant changes to existing source
code, the committer should take reasonable measures to insure that the
source code continues to work.

	Include the standard EOxServer header in every new file and set the following
SVN properties:
	svn propset svn:keywords ‘Author Date Id Rev URL’ <new_file>

	svn propset svn:eol-style native <new_file>










Legal

Commiters are the front line gatekeepers to keep the code base clear of
improperly contributed code. It is important to the EOxServer users and
developers to avoid contributing any code to the project without it being
clearly licensed under the project license.

Generally speaking the key issues are that those providing code to be included
in the repository understand that the code will be released under the
EOxServer License, and that the person providing the code has the right
to contribute the code. For the committer themselves understanding about the
license is hopefully clear. For other contributors, the committer should verify
the understanding unless the committer is very comfortable that the contributor
understands the license (for instance frequent contributors).

If the contribution was developed on behalf of an employer (on work time, as
part of a work project, etc) then it is important that an appropriate
representative of the employer understand that the code will be contributed
under the EOxServer License. The arrangement should be cleared with an
authorized supervisor/manager, etc.

The code should be developed by the contributor, or the code should be from a
source which can be rightfully contributed such as from the public domain, or
from an open source project under a compatible license.

All unusual situations need to be discussed and/or documented.

Committers should adhere to the following guidelines, and may be personally
legally liable for improperly contributing code to the source repository:


	Make sure the contributor (and possibly employer) is aware of the
contribution terms.

	Code coming from a source other than the contributor (such as adapted
from another project) should be clearly marked as to the original
source, copyright holders, license terms and so forth. This information
can be in the file headers, but should also be added to the project
licensing file if not exactly matching normal project licensing
(eoxserver/COPYING and eoxserver/README).

	Existing copyright headers and license text should never be stripped
from a file. If a copyright holder wishes to give up copyright they must
do so in writing to the project before copyright messages are
removed. If license terms are changed it has to be by agreement (written
in email is ok) of the copyright holders.

	When substantial contributions are added to a file (such as substantial
patches) the author/contributor should be added to the list of copyright
holders for the file.

	If there is uncertainty about whether a change it proper to contribute
to the code base, please seek more information from the PSC.






Voting History





	Motion:	Adopted on 2011-05-17 with +1 from Arndt Bonitz, Stephan Krause, Stephan Meißl, Milan Novacek, Martin Paces, Fabian Schindler








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 9: SOAP Binding of WCS GetCoverage Response
    
    

    
 
  
  

    
      
          
            
  
RFC 9: SOAP Binding of WCS GetCoverage Response





	Author:	Milan Novacek


	Created:	2011-05-17


	Last Edit:	2011-05-30


	Status:	ACCEPTED


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc9






Introduction

The current/draft OGC specifications for the SOAP binding for a WCS GetCoverage
Response are inconsistent with the SOAP spec if the GetCoverage response
includes a binary file.
This RFC proposes an update to OGC 09-149r1 to resolve the inconsistencies:
Requirements 5 and 6 should be changed to use SOAP MTOM where the entire
coverage response comprises the attachment.  This coverage attachment is
referred to from within a new element ‘Coverage’ which is also defined as part
of this RFC.




Problem Description

In OGC 09-149r1, Requirement 5 mandates that a GetCoverage SOAP response
shall be encoded as “SOAP with Attachments” as defined in [W3C Note 11],
but using SOAP 1.2 rather than SOAP 1.1. Requirement 6 says, rather
imprecisely, that in a GetCoverage response, the SOAP Envelope shall
contain one Body element which contains the Coverage as its single
element.

For binary attachments to SOAP 1.2  messages, W3C recommends the usage of MTOM
instead of SwA (see [1] and [2]).
According to the guidance in [1],  the SOAP 1.2 MTOM standard requires the use
of the xop:Include element to refer to binary attachments.
The difficulty arises because the “gml:rangeSet” element, which according to
OGC 09-110r is mandated for a GetCoverage response, does not have a provision
for using the xop:Include element to refer to an attached file.  For this
reason one cannot include a reference to an MTOM SOAP attachment in the
GetCoverage response.




Proposed Changes to OGC 09-149r1

To resolve the problem, we propose to update two requirements of OGC 09-149r1
as follows:


Requirement 5:
A GetCoverage SOAP response shall be encoded according to the W3C SOAP 1.2
standard [http://www.w3.org/TR/soap12-part1/] using MTOM
[http://www.w3.org/TR/soap12-mtom/].

Requirement 6:
In a GetCoverage response, the SOAP Body shall contain one element,
“Coverage” of type “SoapCoverageType”, defined in the namespace
http://www.opengis.net/wcs/2.0, according to the schema definition
in http://www.opengis.net/wcs/2.0/wcsSoapCoverage.xsd.





Schema Location

For discussion purposes of this RFC, the proposed schema wcsSoapCoverage.xsd is available
in the sandbox [3].
For convenience, wcsCommon.xsd in the same directory has been modified to include
wcsSoapCoverage.xsd.






References





	[1]:	http://www.w3.org/TR/soap12-part0/


	[2]:	http://www.w3.org/TR/soap12-mtom/


	[3]:	sandbox/sandbox_wcs_soap_proxy/schemas/wcs/2.0/wcsSoapCoverage.xsd








Voting History





	Motion:	Adopted on 2011-05-30 with +1 from Martin Paces, Stephan Meißl, Milan Novacek, Stephan Krause, and +0 from Arndt Bonitz








Traceability





	Requirements:	“N/A”


	Tickets:	“N/A”











          

      

      

    

  

  
    
    
    RFC 10: SOAP Proxy
    
    

    
 
  
  

    
      
          
            
  
RFC 10: SOAP Proxy





	Author:	Milan Novacek


	Created:	2011-05-18


	Last Edit:	2011-05-30


	Status:	ACCEPTED


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc10






Introduction

This RFC proposes the design and implementation of the module soap_proxy.
Initially soap_proxy is for use with WCS services.
The intent of soap_proxy is to provide a soap processing front end for
those WCS services which do not natively accept soap messages.
Soap_proxy extracts the xml of a request from an incoming SOAP message
and invokes mapserver or eoxserver in POST mode with the extracted xml.
It then accepts the response from mapserver or eoxserver and repackages
it in a SOAP reply.




Description

Soap-proxy should implement OGC 09-149 Web Coverage Service 2.0
Interface Standard - XML/SOAP Protocol Binding Extension. See RFC-9
for a proposal to address certain problems with the current revision
of this standard (which is OGC 09-149r1).

Initially it is planned that soap_proxy supports WCS 2.0.  WCS 1.1 is
a low priority.
The possibility should be investigated to generalize soap_proxy to
enable support of other protocols such as WPS.

Soap_proxy is implemented as a Web Service using the Axis2/C
framework [AXIS], plugged into a standard Apache HTTP server via its
mod_axis2 module.




Governance


Source Code Location

The soap_proxy code will be located in the subdirectory ‘soap_proxy‘ at the main
level of the eoxserver repository, i.e. at the same level as the eoxserver directory:
trunk/soap_proxy.




Initial Code Base

A first prototype implementing parts of the functionality has been developed under
the O3S project.  The source of this prototype will be copied to the soap_proxy
repository and form the basis for further development.




RFCs and Decision Process

In the early stages, development surrounding of soap_proxy not directly affecting
eoxserver will be undertaken in a relaxed manner compared to the RFC based decision
taking that prevails for eoxserver.

All non trivial changes to the soap_proxy core will be announced for discussion on
the eoxserver-dev mailing list, but will not undergo the RFC voting process unless
there is a direct impact on any actual eoxserver functionality.

Once the transition phase of the integration has been completed, the development of
soap_proxy will follow the standard RFC based decision taking.




License

Soap_proxy will use either GPL or a MapServer-style license, this is yet TBD.




Wiki, Trac, Tickets

Soap_proxy will use all of the eoxserver support infrastructure.






References





	[AXIS]:	http://axis.apache.org/axis2/c/core/








Voting History





	Motion:	Adopted on 2011-05-30 with +1 Martin Paces, Stephan Meißl, Fabian Schindler, Milan Novacek








Traceability





	Requirements:	“N/A”


	Tickets:	“N/A”











          

      

      

    

  

  
    
    
    RFC 11: WPS 1.0.0 Interface Prototype
    
    

    
 
  
  

    
      
          
            
  
RFC 11: WPS 1.0.0 Interface Prototype





	Author:	Martin Paces


	Created:	2011-07-20


	Last Edit:	2011-07-21


	Status:	DRAFT


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc11






Introduction

This RFC describes the design and implementation of the OGC WPS 1.0.0
Interface prototype.  The WPS (Web Processing Service) interface
prototype adds the processing functionality to the EOX-Server
and in capable of invocation of both synchronous ans
asynchronous processes invoked using either XML or KVP
encoding as described in  OGC 05-007r7 OpenGIS Web Processing Service
document.




Description

The implementation extends the set of EOX-Server’s OWS service handlers
by the WPS specific interface. Namely, it ads following handlers



	WPS service handler

	WPS 1.0.0 version handler

	WPS GetCapabilities operation handler

	WPS DescribeProcess operation handler

	WPS Execute operation handler






The added WPS functionality could be split three (currently separated)
logical parts:



	WPS interface and operation logic (subject to this RFC)

	WPS data model and generic process class (loosely based on
PyWPS, currently separated from the interface and operation logic)

	WPS process instances – user defined processes, ancestors of the generic
service class (completely independent of the EOX-Server, not subject to this RFC)







WPS Interface and Operation Logic

This part implements the actual OWS service handlers and it is tightly coupled with the EOX-Server.
It parses and interprets the operation request and generates the operation responses reusing
existing parts of the EOX-Server (primarily the XML and KVP request decoders).
This interface has access to the installed WPS process instances (implemented as python modules)
and it reads their descriptions. In case of the Execute operation it fetches the parsed input data
to the selected process instance, triggers the actual execution of the process, and generates the status
responses and handles output data XML packing and encoding.

In case of a synchronous execution the WPS processes are executed in context of the EOX-Server’s OWS request.
In case of an asynchronous WPS processes a dedicated OS process is started from the context of the EOX-Server’s OWS request.

This part is distributed under the EOX-Server’s MapServer-like open source licence.




WPS Data Model and Generic Process Class

This part (not subject to this RFC) is loosely based on the WPS Process API of the :PyWPS:
SW. Due to the flaws of the original data model and
requirements of the EOX-Server integration the the original :PyWPS: code was substantially modified
(practicall rewritten) leaving only traces of the generic (parent) WPS Process class.

The work is based on the stable :PyWPS: version 3.1.0. The reason we have replaced the original
data model was that it had several design and implantation flaws
(e.g., the way how the multiple input and output
data occurrences were handled, bounding box data handling and encoding, the way how input sequences
were detected). After first initial correcting attempts we gave up and rewrote the model from scratch.
The generic Process class was modified: (i) due to the the changes made to the data model,
(ii) removing unused parts of code (e.g., useless class reinitialization, Grass integration,
internationalization), (iii) and finally due to the needs of the EOX-Server integration.

Despite the only fragments of the original :PyWPS:, this code was derived from the :PyWPS: and it
is distributed under the terms of the original GPL licence.




WPS Process Instances

The process instances are not subject to this RFC and should be written by the WPS users
to provide the desired functionality. The processes are created as separated python
modules each containing a single customized sub-class of the generic process class.
The unique process identifier is the same as the name of python module (file’s base name),
the rest of the process description is defined by an implementer in the class definition.

We provide set of sample demo process samples covering from basic to most advanced cases.
This part is distributed under the terms of PyWPS GPL licence.




Transition to Operation - Issues to be resolved

The existing prototype has still a couple issues to be resolved before operational deployment.



	licence issues - the WPS Process’s data model and parent Process’s class shall be merged
with the WPS Interface and Operation logic and distributed together under the same licence terms

	resource tracker - there should be a resource tracker looking after the used resources,
i.e., stored files and executed asynhronous processes. Each of these resources shall be monitored
and released (deleted in case of unused files, properly killed in case of “zombie” processes) once
is not usefull anymore.











Governance


Source Code Location


WPS Interface

Currently the Interface code can be downloaded from the WPS sandbox:


http://eoxserver.org/svn/sandbox/sandbox_wps





WPS - Data Model and Generic Process Class

The code derived from the PyWPS (only the parts needed for EOX-Server integration)
can be found at:


http://o3s.eox.at/svn/deliverables/developments/wps/server





WPS - Demo Processes

The demo services are available at:


https://o3s.eox.at/svn/deliverables/developments/wps/wps_demo_services/







Initial Code Base

A first prototype implementing parts of the functionality has been developed under
the O3S project.




RFCs and Decision Process

TBD




License

WPS Interface prototype shall be distributed under the terms of the EOX-Server’s MapServer-like licence.

The other parts required by the WPS functionality are available under the terms of the [PyWPS] GPL licence.




Wiki, Trac, Tickets

TBD






References





	[PyWPS]:	http://pywps.wald.intevation.org/








Voting History

N/A




Traceability





	Requirements:	“N/A”


	Tickets:	“N/A”











          

      

      

    

  

  
    
    
    RFC 12: Backends for the Data Access Layer
    
    

    
 
  
  

    
      
          
            
  
RFC 12: Backends for the Data Access Layer





	Author:	Stephan Krause


	Created:	2011-08-31


	Last Edit:	$Date$


	Status:	ACCEPTED


	Discussion:	http://eoxserver.org/wiki/DiscussionRfc12





This RFC proposes the implementation of different backends that provide common
interfaces for data stored in different ways. It describes the first version
of the Data Access Layer implementation as well as changes to the Data
Integration Layer that are caused by the changes to the data model.


Introduction

RFC 1: An Extensible Software Architecture for EOxServer introduced the Data Access Layer as an abstraction layer for
access to different kinds of data storages. These are most notably:


	data stored on the local file system

	data stored on a remote file system that can be accessed using FTP

	data stored in a rasdaman database



The term backend has been coined for the part of the software implementing
data access to different storages.

This RFC discusses an architecture for these backends which is based on the
extension mechanisms discussed in RFC 2: Extension Mechanism for EOxServer. After the Requirements
section the architecture of the Data Access Layer is presented. It is structured
into a section describing the Data Access Layer Data Model which consists basically
of Storages and Locations.

Furthermore, the necessary changes to the Data Integration Layer are explained.
On the one hand these affect the Data Model which is
altered considerably. On the other hand new structures
(Data Sources and Data Packages) that
provide more flexible solutions for data handling by the Data Integration Layer
and the layers that build on it.




Requirements

We may refer here to the Backends Requirements
section as well as the description of the
Data Access Layer in RFC 1: An Extensible Software Architecture for EOxServer. These state the need
for different backends to access local and remote data in different ways and
thus are the incentive for this RFC and the respective implementation.




Data Access Layer Data Model

The new database model for the Data Access Layer is shown in the figure below:


[image: ../_images/model_backends1.png]
Data Access Layer Database Model



The core element of the Data Access Layer data model is the Location.
A location designates a piece of data or metadata, actually any object that can
be stored in one of the Storage facilities supported. Each backend
defines its own subclasses of Location and Storage to
represent repositories, databases, directories and objects stored therein.

The database model is embedded in wrappers that add logic to the model and
provide common interfaces to access the data and metadata of the objects in
the backend. Internally, they make use of the extension mechanism of
RFC2 to allow to find and get the right model records and
wrappers.

Last but not least, there is a File Cache for storing files
retrieved from remote hosts. The locations of the cache files are stored in
the database so EOxServer can keep track of them and implement an intelligent
cleanup process.




Storages

The Storage subclasses represent different types of storage
facilities. In the database model, only FTP and rasdaman backends have their own
models defined that contain the information how to connect to the server. This
is not needed for locally mounted file systems, so the local backend does not
have a representation in the database.

The wrapper layer constructed on top of the database model on the other hand
knows three classes of storages that provide a common interface to access their
data:


	LocalStorage which implements access to locally mounted file
systems

	FTPStorage which implements access to a
remote FTP server

	RasdamanStorage which implements access
to a rasdaman database



Each of these storage classes is associated to a certain type of location.

The common interface for storages allows to retrieve their type and their
capabilities. Depending on these capabilities the storage classes also
provide methods for getting a local copy of the data and retrieving the size
of an object as well as scanning a directory for files. At the moment these
three methods are implemented by file-based backends only
(LocalStorage and FTPStorage).




Locations

Locations represent the points where to access single objects on a storage
facility. At the moment three types of locations corresponding to the three
storage types are implemented:


	LocalPath defines a path on the locally mounted file system

	RemotePath defines a path on a remote server reachable via FTP

	RasdamanLocation defines a collection (database table) and oid
corresponding to a single rasdaman array



Locations share a common interface that is closely related to the storage
interface. So, given the storage capabilities, it is possible to fetch a local
copy, retrieve the size of an object and scan the location for files. The
LocationWrapper subclasses extend these interfaces to make storage
specific location information (e.g. host name for remote storages) accessible.




File Cache

With the CacheFileWrapper class the Data Access Layer provides a
very simple file cache implementation at the moment that serves to cache
remote files retrieved via FTP. The cache keeps track of the files it contains
using the CacheFile model in the database.

So far, no synchronization for data access is implemented, i.e. threads
that are processing requests have no possibility to lock a cache file in order
to prevent it from being removed by another thread or process (e.g. periodical
cleanup process). This is foreseen for the future.




Changes to Data Integration Layer Data Model

In order to use the new possibilities brought by the implementation of the Data
Access Layer, the Data Integration Layer had to be revised and changed
considerably. Up until now there has been a strong link between the type of
coverage and the way it was stored. Datasets had to be stored as files in the
local file system whereas mosaics were stored in tile indexes. This strong link
had to be weakened to allow for new combinations.

The solution is a compromise between flexibility and simplicity. Although one
can think of many more combinations, we introduce three classes of so-called
DataPackage objects. A data package combines a data resource with an
accompanying metadata resource. Both resources are referred to by
Location subclass instances. Now the three data package classes are:


	LocalDataPackage which combines a local data file with a local
metadata file

	RemoteDataPackage which combines a remote data file with a
remote metadata file (both reachable via FTP); it contains a
CacheFile reference for data in the local cache

	RasdamanDataPackage which combines a rasdaman array with a local
metadata file



Furthermore, the concept of data directories where to look up datasets
automatically had to be revised in order to use the new capabilities of the
Data Access Layer. They were replaced by a concept called data sources which
includes local and remote repositories. The DataSource model combines
a local or remote Location with a search pattern for dataset names.
Automatic lookup of rasdaman arrays is not foreseen at the moment.

Like most database objects, data packages and data sources are accessible using
wrappers that provide a common interface and add application logic to the data
model.




Data Packages

The DataPackageInterface defines methods for high-level and low-level
data access and for metadata extraction from the underlying datasets. It is
implemented by wrappers for local, remote and rasdaman data packages
(LocalDataPackageWrapper, RemoteDataPackageWrapper and
RasdamanDataPackageWrapper respectively).

The implementation of the data package wrappers is based on the
GDAL [http://www.gdal.org/] library and its Python binding for data access
as well as for geospatial metadata extraction. It contains an
open() method that returns a GDAL dataset providing
a uniform interface for raster data from different sources and formats. For
low-level data access a getGDALDatasetIdentifier()
method is provided which allows to retrieve the correct connection string
for GDAL and thus to configure MapServer.

Geospatial metadata is read from the datasets themselves at the moment. Note
that this is not possible for rasdaman arrays so far, so automatic detection
and ingestion of these is not enabled.

EO Metadata is read from the accompanying metadata file and translated into the
internal data model of EOxServer. The existing metadata extraction classes have
been revised in order to comply with the extensible architecture presented in
RFC 1 and RFC 2.




Data Sources

The wrappers for data sources (DataSourceWrapper) provide the
capability to search a local or remote location for datasets. At the moment
only file lookup is implemented whereas automatic rasdaman array lookup has
been omitted. This is mostly due to the fact that rasdaman arrays do not
contain geospatial metadata and a separate mechanism has to be found to retrieve
this vital information.

The wrapper implementations provide a detect
method that returns a list of DataPackageWrapper objects with
which coverages are initialized (using the geospatial and EO metadata read from
the data package).




Ingestion and Synchronization

The Synchronizer implementation in
eoxserver.resources.coverages.synchronize has to be revised according to
the changes in the Data Access Layer and Data Integration Layer.

The implementations for containers, i.e. Rectified Stitched Mosaics and Dataset
Series, shall retrieve the data sources associated with a coverage and
use its detect method to obtain the data packages
included in it. Rectified or Referenceable Datasets are constructed from these.
The interfaces of both should not change.

The interface of RectifiedDatasetSynchronizer on the other hand will
have to change in order to allow for remote files to be ingested. In detail,
the create() and
update() methods will not expect a file
name any more, but a location wrapper instance (either
LocalPathWrapper or RemotePathWrapper). These can be
generated by a call to the LocationFactory like this:

from eoxserver.core.system import System

factory = System.getRegistry.bind("backends.factories.LocationFactory")

location = factory.create(
    type = "local",
    path = "<path/to/file>"
)

...








Voting History





	Motion:	To accept RFC 12


	Voting Start:	2011-09-06


	Voting End:	2011-09-15


	Result:	+5 for ACCEPTED (including 1 +0)








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 13: WCS-T 1.1 Interface Prototype
    
    

    
 
  
  

    
      
          
            
  
RFC 13: WCS-T 1.1 Interface Prototype





	Author:	Martin Paces


	Created:	2011-09-13


	Last Edit:	$Date$


	Status:	ACCEPTED


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc13






Introduction

This RFC describes the design and implementation of the interface prototype
of the Open Geospatial Consortium (OGC) Web Coverage Service - Transaction
operation extension (WCS-T) [OGC 07-068r4] [http://portal.opengeospatial.org/files/?artifact_id=28506] standard.
The WCS-T extends the baseline WCS (allowing download of coverages only) by additionally
allowing modifications of the stored coverages, namely, it allows adding,
deleting, or updating of the coverages’ data and their metadata.




WCS Transaction Operation

The WCS-T standard [OGC 07-068r4] defines an additional WCS transaction operation
to perform modifications of the WCS Coverages. A single transaction contains one
or more actions to be performed over coverages (coverage actions). The WCS-T standard
requires that all WCS-T implementations shall support at least one action per request,
multiple actions per request are optional.

The possible coverage actions are:



	Add - inserts new coverage and its metadata (required by all WCS-T implementations)

	Delete - removes an existing coverage and its metadata (optional)

	UpdateAll - replace data and metadata of an existing coverage (optional)

	UpdateMetadata - replace metadata of an existing coverage (optional)

	UpdateDataPart - replace data subset of an existing coverage (optional)






The supported optional features (multiple actions per request or optional coverage actions)
shall be announced in the ServiceIdentification section of the WCS Capabilities XML document
using the Profile XML element (see [OGC 07-068r4] for a detailed list of the applicable URNs).

Although not explicitly mentioned by the WCS-T standard, we assume the transaction operation
shall be present in the OperationMetada section of the WCS Capabilities.

The WCS-T standard allows XML encoded requests submitted as HTTP/POST requests. The KVP encoding
of HTTP/GET requests is not supported by WCS-T since “the KVP encoding appears impractical
without significantly restricting Transaction requests” [OGC 07-068r4].
Further, the [OGC 07-068r4] introduction mentions that the exchanged XML documents
shall use the SOAP packaging, however, the examples are presented without the SOAP wrapping
leaving this requirement in doubts.

The WCS-T requests can be processed synchronously or asynchronously.
In the first case, the request is processed immediately and the transaction response
is returned once actions have been processed successfully.
In the latter case, the request is validated and accepted by the server returning
simple acknowledgement XML document. The request is than processed asynchronously
possibly much later than the acknowledgement XML document has been returned to the client.
The asynchronous operation is triggered by presence of the responseHandler element in the
WCS-T request. This element contains an URL where the response document should be uploaded.

All the data passed to the server by the WCS-T requests are in form of URL references.
The support for direct data passing via MIME/multi-part encoded requests is not considered
by the WCS-T standard.

The format of the ingested coverage data is not considered by the WCS-T standard at all.
Neither it can be annotated by the WCS-T request nor by the WCS-T OperationMetadata. Thus
we assume the format selection is left at discretion of the WCS-T implementation.

The WCS-T standard requires that certain metadata shall be provided by the client.
These are geo-transformation, coverage description, and coverage summary. Apart
from this mandatory metadata application specific metadata may be added by the
implementation.

The WCS-T standard allows clients to submit their request and (created) coverages
identifiers. These identifiers do not need to be used by the WCS-T server as they
may collide with the identifiers of other requests or coverages, respectively,
or simply not follow the naming convention of the particular WCS server.
Thus the client provided identifiers are not binding for the WCS server and
they rather provide a naming hint. As result of this the WCS-T client shall never
rely on the identifiers provided to the WCS-T server but it shall always read
the identifier returned by the WCS-T XML response.


EOxServer Implementation

The WCS transaction operations is implemented using the service handlers API
of EOxServer. Since the WCS-T standard requires the version of the transaction
operation to be ‘1.1’ (rather than the ‘1.1.0’ version used by other WCS operations)
a specific WCS 1.1 version handler must have been employed.
The operation itself is then implemented as a request handler.

Since the presence of the WCS-T operation needs to be announced by the WCS Capabilities
the WCS 1.1.x getCapabilities operation request handlers have to be modified.
Since the Capabilities XML response is generated by the MapServer (external library)
the only feasible way to introduce the additional information to the getCapabilities
XML response is to: i) capture the MapServer’s response, ii) modify the XML document,
and iii) send the modified XML instead of the MapServer’s one.

The transaction request or response XML documents do not use the (presumably) required
SOAP packaging. We have intentionally refused to follow this requirement in
our implementation as the SOAP packing and unpacking is duty of EOxServer’s SOAP  Proxy
component and our own implementation would rather duplicate the functionality
implemented elsewhere.

Our implementation, by default, offers the WCS-T core functionality only. All the optional
features such as multiple coverage actions per request or the optional coverage actions
shall be explicitly enabled by EOxServer’s configuration (see following section for
details).

Both synchronous and asynchronous modes of operation are available.
While the synchronous request are processed within the context of the WCS-T request
handler the asynchronous requests are parsed and validated within the context
of the WCS-T request but the processing itself is performed by the Asynchronous Task
Processing (ATP) subsystem of EOxServer. Namely, the processing task is enqueued to the
task queue and than later executed by one of the employed Asynchronous Task Processing
Daemons (ATPD). More details about the ATP can be found in [ATP-RFC].

As it was already mentioned, the asynchronous mode of operation is triggered by presence
of the responseHandler element in the WCS-T request and this element contains an URL where
the response document should be uploaded. Our implementation supports following protocols:



	FTP - using the PUT command; username/password FTP authentication is possible

	HTTP - using POST HTTP request; username/password FTP authentication is possible






Secured (SSL or TLS) versions of the protocols are currently not supported.

The username/password required for authentication can be specified directly by the URL

scheme://[username:password@]domain[:port]/path





In case of FTP, when the paths point to a directory a new file will be created taking the
request ID as the base file-name and adding the ‘.xml’ extension. Otherwise a file given
by the path will be created or rewritten.

The WCS-T implementation uses always pairs of identifiers (internal and public) for both
request and (created) coverage identifiers. The public identifiers are taken from the WCS-T
request, provided they do not collide with identifiers in use. In case of not supplied or colliding
identifiers the public identifiers are set from the internal ones.
The public identifiers are used in the client/server communication or for naming of the
newly created coverages. The internal identifiers are exclusively used for naming
of the internal server resources (asynchronous tasks, directory and file names, etc.)

Each WCS-T request, internally, gets a context, i.e. set of resources assigned to a particular
request instance. These resources are: i) an isolated temporary workspace (a directory to store
intermediate files deleted automatically once the request is finished), ii) an isolated permanent
storage (a directory where the inserted coverages and their metadata is stored) and iii) in case of
asynchronous mode of operation ATP task instance. These resources make use of the internal
identifiers only.




EOxServer Configuration

The EOxServer’s WCS-T implementation need to be configured prior to the operation.
The configuration is set in EOxServer’s ‘eoxserver.conf’ file.
The WCS-T specific options are grouped together in the ‘services.ows.wcst11’ section.

The WCS-T options are:



	allow_multiple_actions (False|True) - allow multiple actions per single WCS-T request.

	allowed_optional_action (Delete,UpdateAll,UpdateMetadata,UpdateDataPart) -
comma separated list of enabled optional WCS-T coverage action. Set empty if none.

	path_wcst_temp (path) - directory to use as temporary workspace

	path_wcst_perm (path) - directory to use as permanent workspace






Example:

...
# WCS-T 1.1 settings
[services.ows.wcst11]

# enble disable multiple actions per request
allow_multiple_actions=False

# list enabled optional actions {Delete,UpdateAll,UpdateMetadata,UpdateDataPart}
allowed_optional_actions=Delete,UpdateAll

# temporary storage
path_wcst_temp=/home/test/o3s/sandbox_wcst_instance/wcst_temp

# permanent data storage
path_wcst_perm=/home/test/o3s/sandbox_wcst_instance/wcst_perm
...








Coverages, Data and Metadata

The one and only currently supported format of pixel data is GeoTIFF.

All the necessary meta-data required by the EOxServer are extracted from the GeoTIFF
annotation and (optionally) from the provided EO meta-data (see section below).

Due to the limitations of the current Coverage Managers’ API of the EOxServer
the current WCS-T implementation has following restrictions:


	only rectified grid coverages can be ingested;

	urn:ogc:def:role:WCS:1.1:CoverageDescription metadata are ignored and
even not required as this information cannot be inserted to EOxServer anyway;

	urn:ogc:def:role:WCS:1.1:CoverageSummary metadata are ignored
as this information cannot be inserted to EOxServer anyway;

	urn:ogc:def:role:WCS:1.1:GeoreferencingTransform metadata are ignored
as this information is relevant to referenced data only

	urn:ogc:def:role:WCS:1.1:OtherSource metadata are ignored
as this information cannot be inserted to EOxServer anyway.






WCS-T and Earth Observation Application Profile

In order to be able to ingest additional metadata as defined by the
WCS 2.0 - Earth Observation Application Profile [EO-WCS]
we allow the ingestion of client-defined EO-WCS metadata attached to
the ingested pixel data. The EO-WCS XML is passed
as coverage OWS Metadata XML element with
‘xlink:role=”http://www.opengis.net/eop/2.0/EarthObservation”’.






Governance


Source Code Location

http://eoxserver.org/svn/sandbox/sandbox_wcst




RFCs and Decision Process

TBD




License

The WCS-T implementation shall be distributed under the terms of EOxServer’s MapServer-like license.




Wiki, Trac, Tickets

TBD






References





	[OGC 07-068r4]:	http://portal.opengeospatial.org/files/?artifact_id=28506


	[ATP-RFC]:	http://eoxserver.org/doc/en/rfc/rfc14.html


	[EO-WCS]:	TBD








Voting History





	Motion:	To accept RFC 13


	Voting Start:	2011-12-15


	Voting End:	2011-12-22


	Result:	+3 for ACCEPTED








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 14: Asynchronous Task Processing (ATP)
    
    

    
 
  
  

    
      
          
            
  
RFC 14: Asynchronous Task Processing (ATP)





	Author:	Martin Paces


	Created:	2011-10-25


	Last Edit:	2011-12-09


	Status:	ACCEPTED


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc14





This RFC describes the Asynchronous Task Processing subsystem of the EOxServer.


Introduction

The Asynchronous Task Processing (ATP) subsystem, as the name suggests, extends the EOxServer functionality
by ability to process tasks asynchronously, i.e., on background independently of the default EOxServer’s
synchronous client requests processing.

Although the ATP is designed primarily to support asynchronous request processing of OGC Web Services such
as the Web Coverage Service transaction extension and/or the Web Processing Service, it is not limited
to these and other application may use it as well.

The ATP employs the model of a single central task queue and one or more
Asynchronous Task Processing Daemons (APTD) executing the pending tasks
pulled from the task queue. A single ATPD is not restricted
to a single processed task at time and can internally process multiple tasks concurrently,
e.g., by employing a pool of worker processes assigned to multiple CPU cores.

The ATP subsystem is implemented as Django application using the DB model as the task queue.
The underlying DB storage although it may be seen as suboptimal in terms of the performance
and latency it assure tolerance of the subsystem to possible failures or maintenance
shut-downs of both EOxServer or APTDs.

The ATP can be shared by multiple application at time as each task has its type (application
to which it belongs) and each type of the task has a predefined handler subroutine. The
shared nature of the APT subsystem allows fine control over the processing resources, e.g.,
the number of concurrently running task matching number of available CPU cores.

The ATP is primarily designed for resource demanding longer running tasks (10 seconds and more)
which in case of synchronous operation could clog the system or lead to connection time-outs.
On contrary, light tasks (less than 1 sec.) should preferably be executed synchronously
as the extra ATP latency might be unfavourable.




Asynchronous Task Processing


[image: ../_images/processes_task_state.png]
Fig.1: ATP Task State Diagram



The ATP subsystem is capable of tracking of the tasks during their life cycle depicted
by the Task state diagram Fig.1. The task can be in one of the following states:



	ACCEPTED  - a new enqueued task waiting to be pulled by the processing daemon

	SCHEDULED - a task pulled (dequeued) by the processing daemon but not yet stared

	RUNNING   - a task being processed by the processing daemon

	PAUSED    - a task which has been put on hold by the processing daemon and which is waiting to be resumed

	FINISHED  - a task which has been finished successfully (terminal state)

	FAILED    - a task which has been finished by a failure (terminal state)






When a task becomes identified as staled (by exceeding the type specific time-out) it may be re-enqueued,
i.e., the processing shall be terminated, enqueued as a new task again changing its status from
one of the non-terminal states (SCHEDULED, RUNNING, PAUSED) to ACCEPTED. This procedure is implemented
to avoid abandoned “zombie” tasks left, e.g., by an aborted processing daemon. However, this procedure
is repeated only limited times (the count is task type specific, three by default), once the allowed
restart’s count is exceeded the task is marked as FAILED.

The history of the task’s state transition is logged in order to provide information to the system operator.

The finished tasks are kept recorded for ever by default, however, this can changed by a task type (application)
specific retention time, which allow automatic removal of out-dated tasks, e.g., one day, week or month after
their finish.

To inspect the state of the APT subsystem, a couple of simple DJango html views has been created.


ATP DB Model


[image: ../_images/processes_db_model.png]
Fig.2: ATP DB model



The APT Django DB model consists of six classes as depicted in Fig.2.



	
	Type - defining the type of task instance, its unique identifier, task handler (python subroutine),

	and the type specific parameters such as maximum unsuccessful attempts to start the task execution,
time-out after the which the task is considered to be abandoned and re-enqueued for processing
(e.g., due to ATPD failure), retention time to keep the record of the finished task.





	Instance - defining a single task instance, its identifier and current state.

	Inputs - record holding input parameters stored serialized (pickled) Python object

	Response - record holding the optional tasks output (most likely an XML response document or serialized Python object)

	LogRecord - single log entry. The log keeps history of the task’s state transition.

	Task - single task queue record. The task table holds the accepted tasks, their enqueuetime, ATPD assignment.









ATP API

The ATP subsystem provides simple API which allows:



	registering of new task type and its parameters (repeated registration updates the parameters)

	removal of unused task types (provided there is no instance of the removed type)

	enqueueing of new task instance and input parameters (implies creation of new task instance)

	dequeueing of enqueued instance (used by APTD)

	removal of finished tasks

	re-enqueueing of a non terminal state task

	changing of the task status

	adding and retrieval of the response (output)






Further the mandatory function prototype to define new handlers is given.






Governance


Source Code Location

http://eoxserver.org/svn/sandbox/sandbox_wcst




RFCs and Decision Process

TBD




License

The APT implementation shall be distributed under the terms of EOxServer’s MapServer-like license.




Wiki, Trac, Tickets

TBD






References




Voting History





	Motion:	To accept RFC 14


	Voting Start:	2011-12-15


	Voting End:	2011-12-22


	Result:	+4 for ACCEPTED








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 15: Access Control Support
    
    

    
 
  
  

    
      
          
            
  
RFC 15: Access Control Support





	Author:	Arndt Bonitz


	Created:	2011-11-14


	Last Edit:	2011-02-09


	Status:	ACCEPTED


	Discussion:	http://eoxserver.org/wiki/DiscussionRfc15






Overview

This RFC describes access control support for the EOxServer. The following
figure gives an overview of the proposed access control implementation and its
different components:


[image: ../_images/IDM_HTTP_Components.png]
EOxServer Access Control Implementation



The access control implementation relies on the Shibboleth framework [http://shibboleth.internet2.edu/] and parts of the CHARON framework [http://www.enviromatics.net/charon/index.html], namely the CHARON
Authorisation Service. The components are all released as Open Source.
Shibboleth is used for the authentication of users; the CHARON Authentication
Service is responsible for making authorisation decisions if a certain request
may be performed.




Authentication

Authentication is not handled directly by the EOxServer components, but uses
the Shibboleth federated identity management system. In order to do this, two
requirements must be met:


	A Shibboleth Identity Provider (IdP) must be available for authentication

	A Shibboleth Service Provider must be installed and configured in an Apache
HTTP Server [http://httpd.apache.org/] to protect the EOxServer resource.



A user has to authenticate at an IdP in order to perform requests to an
EOxServer with access control enabled. The IdP issues a SAML token which will
be validated by the SP.

Is the user valid, the SP adds the user attributes by the IdP to the HTTP
Header of the original service requests and conveys it to the protected
EOxServer instance. The whole process ensures, that only authenticated users
can access the EOxServer.




Authorisation

As noted in the previous section, the Shibboleth system provides the underlying
service and all asserted user attributes. These attributes can be used to make
an decision if a certain user is allowed to perform an operation on the
EOxServer. The authorisation decision is not made directly in the EOxServer,
but relies on the CHARON Authorisation Service.

The Authorisation Service is responsible for the authorisation of service
requests. It makes use of XACML [http://www.oasis-open.org/committees/xacml/#XACML20], a XML based language
for access policies. The Authorisation Service is part of the
CHAORN [http://www.enviromatics.net/charon/index.html] project. The
EOxServer security components are only responsible for performing an
authorisation decision request on the Authorisation Server and enforcing the
authorisation decision.




EOxServer Security Component

The EOxServer security component is located in the package
eoxserver.services.auth.base in the EOxServer source code directory. The
implementation of the PolicyDecisionPointInterface for the proposed setup
is included in eoxserver.services.auth.charonpdp.py, which is a wrapper for
the CHARON Authorisation Service client. Every request for authorisation is
encoded into a XACML Authorization Query and sent to the Authorisation Service.
The decision (permit, deny) of the service is then enforced by the EOxServer.

A first implementation can be found in this EOxServer sandbox [http://eoxserver.org/browser/sandbox/sandbox_security] and there’s also an
e-mail discussion [http://eoxserver.org/pipermail/dev/2011-October/000295.html]
about this in the dev mailing list archives.




Voting History





	Motion:	Adopted on  2011-02-09 with +1 from Arndt Bonitz, Fabian Schindler,
Stephan Meißl and +0 from Milan Novacek, Martin Paces








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 16: Referenceable Grid Coverages
    
    

    
 
  
  

    
      
          
            
  
RFC 16: Referenceable Grid Coverages





	Authors:	Stephan Krause, Stephan Meissl, Fabian Schindler


	Created:	2011-11-24


	Last Edit:	$Date$


	Status:	ACCEPTED


	Discussion:	http://www.eoxserver.org/wiki/DiscussionRfc16





This RFC proposes an implementation for Referenceable Grid Coverages as
well as for the WCS 2.0 operations working on them.

The implementation is available in the SVN under
http://eoxserver.org/svn/sandbox/sandbox_ref.


Introduction

Referenceable Grid Coverages are coverages whose internal grid structure
can be mapped to a coordinate reference system by some general transformation.
They differ from rectified grid coverages in that the coordinate transformation
is not necessarily affine.

In the context of Earth Observation, raw satellite data can be seen as
referenceable grid coverages. They are typically delivered as image files but
do not have an affine transformation from the image geometry to a georeferenced
coordinate system. Depending on the desired geocoding precision, the
referencing transformation can be very complex involving additional data (DEMs)
and orbit metadata.

EOxServer shall be able to deliver (subsets of) Earth Observation raw data in
its original (referenceable grid) geometry using WCS 2.0 and EO-WCS.
Furthermore, it shall implement easily computable approximate referencing
algorithms based on ground control points (GCPs) in order to enable coordinate
transformations and rectified previews of the original data using WMS.

For the time being, the implementation will focus on SAR image data collected
by the ENVISAT-ASAR sensor made available by ESA.




Requirements

The main requirement source for Referenceable Grid Coverage implementation in
EOxServer is the ESA O3S project. In the course of this project EOxServer shall
be installed in front of a small archive of ENVISAT-ASAR data. In a first step,
we will focus on covering the requirements of this use case, adding more generic
referenceable grid support in future iterations.

The ENVISAT-ASAR data are available in ENVISAT .N1 original format.

Delivery of the original referenceable grid data shall be supported using WCS
2.0 and EO-WCS. Subsetting shall be supported in pixel coordinates (imageCRS)
and in a coordinate reference system. The CRS subsets shall be mapped to pixel
coordinates using a simple coordinate transformation based on GCPs.

No support for resampling (size and resolution) or reprojection
(outputcrs) parameters is required as these are not applicable to
referenceable grid coverages.

At least GeoTIFF shall be supported as output format. GCP and metadata
information contained in the .N1 original file shall be preserved.

In order to support (rectified) WMS previews, a simple georeferencing algorithm
based on GCPs shall be implemented. This shall be reused to provide rectified
versions of referenceable grid coverages using WCS 2.0.




Implementation Details


Input Formats

The implementation for referenceable grid coverages relies on GDAL for input
data and metadata (georeferencing information, GCPs). Any format that supports
storage of GCPs with the dataset can be used. The two most important formats
are the ENVISAT .N1 format and GeoTiff.




Referencing Algorithm and Subsetting

WCS 2.0 allows to define subsets either in the image CRS, i.e. pixel
coordinates, or in some geographic or projected coordinate system. For
rectified grid coverages geographic coordinates can be easily transformed to
pixel coordinates in a straightforward way. This is not the case for
referenceable grid coverages, though.

For referenceable grid coverages produced by Earth Observation missions, the
“correct” referencing transformation is not known in general. Instead, there
are many different algorithms some of them relying on different additional data
and metadata (DEMs, orbit information).

For the purposes of the EOxServer Referenceable Grid Coverage implementation,
a simple first order interpolation algorithm based on GCPs is used. This
algorithm does not use any additional data or metadata. The rationale for this
decision is that there is no way to advertise the actual referencing algorithm
in WCS or WMS, and therefore the most simple and straightfoward algorithm was
used.

Subsets given in georeferenced coordinates are transformed to the image CRS
using the inverse transformation algorithm based on GCPs. The implementation
uses not only the corner coordinates of the subsetting rectangle but also
intermediary points to calculate an envelope and thus to guarantee that the
requested extent be included in the result.




Genuine Referenceable Grid Coverage Support in WCS 2.0

Referenceable Grid Coverages in their original geometry are available using
the EO-WCS extension of WCS 2.0.

The current implementation supports the subset parameter and transforms the
given subsets as indicated in the previous subsection. The size
and resolution parameters are not supported as they do only apply to
rectified grid coverages.

The format parameter options are implemented in the same way as for
rectified grid coverages.

The rangesubset parameter is foreseen for implementation.

In order to be able to serve referenceable grid data, the original
WCS20GetCoverageHandler was split up into
WCS20GetReferenceableCoverageHandler and
WCS20GetRectifiedCoverageHandler. While the latter one still relies
on MapServer, the one for referenceable grid data uses the vanilla GDAL Python
bindings as well as additional GDAL-based extensions written for the
EOxServer project.

Metadata is read from the original dataset and tagged onto the result dataset
using the capabilities of the respective GDAL format drivers. Depending on
the driver implementation, the way the metadata is stored may be specific to
GDAL.




Coverage Metadata Tayloring

The WCS 2.0 standard specifies that the complete referencing transformation be
described in the metadata of a referenceable grid coverage. This is a major
problem for Earth Observation data as in general there is no predefined
transformation; rather there are several different possible algorithms of
varying complexity that can be used for georeferencing the image, possibly
involving Earth Observation metadata such as orbit information, GCPs and
additional data such as DEMs.

Furthermore there is no way to define an algorithm and describe its
parameters (e.g. the GCPs) in GML, but only the outcome of the algorithm, i.e. a
pixel-by-pixel mapping to geographic coordinates. This would produce a
tremendous amount of mostly useless metadata and blow up the XML descriptions
of coverage metadata to hundreds of megabytes for typical Earth Observation
products.

Therefore the current EOxServer implementation does not deliver any of the
gml:AbstractReferenceableGrid extensions in its metadata. Instead a
non-standard ReferenceableGrid element is returned that contains all the
elements inherited from gml:Grid but no further information. This is only a
provisional solution that will be changed as soon as an appropriate way to
describe referencing metadata is defined by the WCS 2.0 standard or any of its
successors.




Support for Rectified Data in WMS and WCS 2.0

The implementation of the WCS 2.0 (EO-WCS) GetCoverage request as well as
the WMS implementation is based on MapServer which supports rectified grid
coverages only. It is not possible to use any kind of GCP based referencing
algorithm in MapServer directly.

GDAL provides a mechanism to create so-called virtual raster datasets (VRT).
These consist of an XML file describing the parameters for transformation,
warping and other possible operations on raster data. They can be generated
using the GDAL C API and are readable by MapServer (which relies on GDAL as
well).

In order to provide referenced versions of referenceable data, EOxServer creates
such VRTs on the fly using the EOxServer GDAL extension. The VRT files are
deleted after each request.




GDAL Extension

The EOxServer GDAL extension provides a Python binding to some C functions using
the GDAL C API that implement utilities for handling referenceable grid
coverages. At the moment the Python bindings are implemented using the
Python ctypes [http://docs.python.org/library/ctypes.html] module.

The eoxserver.processing.gdal.reftools module contains functions
for


	computing the pixel coordinate envelope from a georeferenced subset

	computing the footprint of a referenceable grid coverage

	creating a rectified GDAL VRT from referenceable grid data



All functions use a simple GCP-based referencing algorithm as indicated above.

The GDAL Extension was made necessary because the standard GDAL Python bindings
do not support GCP based coordinate transformations.






Voting History





	Motion:	Adopted on  2012-01-03 with +1 from Arndt Bonitz, Martin Paces,
Fabian Schindler, Stephan Meißl and +0 from Milan Novacek








Traceability





	Requirements:	“N/A”


	Tickets:	“N/A”











          

      

      

    

  

  
    
    
    RFC 17: Configuration of Supported Output Formats and CRSes
    
    

    
 
  
  

    
      
          
            
  
RFC 17: Configuration of Supported Output Formats and CRSes





	Author:	Stephan Krauses, Martin Pačes


	Created:	2012-05-08


	Last Edit:	$Date$


	Status:	ACCEPTED


	Discussion:	n/a





This RFC proposes modifications of the EOxServer allowing configuration of


	the supported output formats for WMS and WCS

	the supported CRSes for WMS and WCS



The RFC presents the rationale and proposes data model changes and new global
configuration options.


Introduction

The reason for preparation of this RFC is the need to change the way
how the supported (file) formats and CRSes (CRS - Coordinate Reference Systems)
for raster data are handled by the EOxServer’s WCS and WMS services to assure
compliance to OGC standards, interoperability and configurability of the
services.

In case of WMS, the formats and CRSes shall be listed in the WMS Capabilities.

In case of WCS, the supported formats and CRSes shall be reported by the WCS
Capabilities  (per service parameters) and in the Coverage Descriptions (per
coverage parameters). Compatibility with the WCS 2.0.1 corrigendum and the
upcoming WCS 2.0 CRS Extension document shall be assured.

Currently, only the native CRS of a dataset is reported in the metadata and
only a small hard-coded set output file format is announced as
supported (JPEG2000, HDF4, netCDF and GeoTIFF for WCS). Hence, there is no way
to configure these parameters.

Furthermore, the underlying MapServer implementation does not return proper OWS
exceptions if an CRS not advertised in the service capabilities or coverage
descriptions is requested.




Supported CRSes and Output Formats in OGC Web Services

The table below gives an overview over the support for reporting CRS and
output format metadata in different standards implemented by EOxServer.


Support for CRS and output format metadata






	Service and Version
	Supported CRS
	Supported Formats




	WMS 1.1.0
	per layer
	per service


	WMS 1.1.1
	per layer
	per service


	WMS 1.3.0
	per layer
	per service


	WCS 1.1.2
	per coverage
	per coverage


	WCS 2.0.0
	n/a
	n/a


	WCS 2.0.1
	per service
	per service





All services but the WCS 2.0 CRS extension (listed under WCS 2.0.1) allow for
reporting CRSes for each coverage / layer individually; the CRS extension could
still be amended, though.

On the other hand, only WCS 1.1.2 allows output format specification on a per
coverage basis whereas all others standards allow to report supported formats
in the global service metadata only.

The WCS 2.0.1 corrigendum introduces the concept of native CRSes and formats
which are reported in the coverage description. The native CRS is the one the
domain set uses.

Counterintuitively, the WCS 2.0.1 native file format is not necessarily the same
as the file format of the stored data. Since not all source file formats are
supported as the output file format (e.g. ENVISAT N1), it is rather the default
format delivered when there no specific file format is requested (omitting the
FORMAT parameter in GetCoverage requests).




Supported Output Formats and WCS 2.0.1 Native Format

As most services (all but WCS 1.1.2, see the table above) allow output
format configuration only per service instance, we propose that the list of
supported formats shall be kept in the global configuration. This can be most
easily done by adding new items to the global configuration file
conf/eoxserver.conf.

Due to the nature of the data transmitted by these services the configuration
should be separate for WMS and WCS.

The EOxServer implementation for WCS 2.0 and EO-WCS requires three parameters
to be defined for each supported format:


	the MIME type

	the name of the GDAL driver

	the default file extension



The possible format choices are restricted by the capabilities of the underlying
SW components (MapServer and GDAL). The list of allowed formats can be fount at
http://www.gdal.org/formats_list.html.

Although the source format (i.e. the actual format of the stored data) could be
determined for each coverage individually at runtime it is preferable
to store this information in the database for performance reasons.

The actual native format announced by the WCS 2.0.1 compliant coverage
description can differ from the source format as not every source format can be
used as output format.

The implementation of the native format reporting for WCS 2.0.1 requires that
EOxServer knows the mapping from the source to WCS 2.0.1 native format. As this
mapping varies depending on the GDAL version, available external libraries or
simply on the preference of the instance administrator the actual mapping shall
be configurable, i.e., it shall be a configuration item in
conf/eoxserver.conf.

For all the proposed configuration items reasonable default shall be provided.




Supported CRSes

All services but WCS 2.0.1 support per-coverage or per-layer reporting of
CRSes. The WCS 2.0 CRS extension is not yet finished and it is suggested that
it, too, should allow for CRS metadata being reported in the coverage
description, although this provision is not included in the current draft of
the document.

Currently, the EOxServer implementation of WMS and WCS sets the ows_srs
MapServer parameter to the original CRS of a coverage. Thus the currently only
announced CRS is the native CRS of the dataset.

This RFC proposes to introduce global configuration items for WCS and WMS,
respectively, allowing definition of CRSes to be reported in addition
to the native CRS. These CRSes shall also be used for EO-WMS layers
corresponding to DatasetSeries.

In order to report a native CRS for Referenceable Grid Coverages
the data model needs to be changed to include the SRID of the GCP projection of
ReferenceableDatasets.




Proposed Implementation


Changes to the Data Model

For implementing the native format reporting in WCS 2.0.1, an additional
field gdal_driver_name on the LocalDataPackage and
RemoteDataPackage model shall be added. For the
RasdamanDataPackage model, a dedicated database field is not
necessary as the GDAL driver is already known because of the nature of the
data package. The driver name should be provided by the
DataPackageWrapper implementation.

In order to report the native CRS of Referenceable Datasets, a srid field
shall be added to the ReferenceableDatasetRecord model.




Changes to the Configuration Files

The following new configuration settings are needed for output format handling:


	a list of GDAL formats with MIME types and a flag indicating if the format
is writable or read-only

	a list of MIME types to be reported as supported formats in WMS

	a list of MIME types to be reported as supported formats in WCS

	a default format MIME type to be used for native format reporting in WCS 2.0.1

	an optional mapping of source format to for native format reporting in WCS 2.0.1



The list of GDAL formats shall be configured in a CSV-like separate
configuration file in conf/formats.conf. Each line in the file shall
correspond to a given format. The syntax is as follows:

<GDAL driver name>,<MIME type>,<either "rw" for writable or "ro" for read-only formats>,<default file extension>





e.g.:

GTiff,image/tiff,rw,.tiff





Empty lines shall be ignored as well as any comments started by single #
(hash) character and ended by the end of the line.

A default configuration (default_formats.conf) and a template
(TEMPLATE_formats.conf) shall be included in the eoxserver/conf
directory. The default configuration shall only be used as a fall-back if no
formats.conf file is available in the instance conf directory.

The other configuration settings shall be defined in conf/eoxserver.conf:

[services.ows.wcs]
supported_formats=<MIME type>[,<MIME type>,...]

[services.ows.wms]
supported_formats=<MIME type>[,<MIME type>,...]

[services.ows.wcs.wcs20]
default_native_format=<MIME type>
source_to_native_format_map=[<src MIME type>,<dst MIME type>[,<src MIME type>,<dst MIME type>,...]





The following new configuration settings are needed for CRS handling:


	a list of supported CRS IDs (SRIDs) for WMS layers

	a list of supported CRS IDs (SRIDs) for WCS coverages



The respective entries in conf/eoxserver.conf:

[services.ows.wcs]
supported_crs=<SRID>[,<SRID>,...]

[services.ows.wms]
supported_crs=<SRID>[,<SRID>,...]





Default settings shall be defined in eoxserver/conf/default.conf.




Module eoxserver.resources.coverages.formats

In order to support output format handling a dedicated module shall be
implemented that


	reads the list of GDAL formats from the configuration files

	map GDAL driver names to MIME types and vice versa

	map MIME type (i.e., format) to default file extensions

	map source format to WCS 2.0.1 native format






Changes to the Service Implementations

The WMS and WCS modules need to be altered to use the new global settings in
the service and layer / coverage configuration.

The hard-coded format settings in WCS 2.0
(eoxserver.services.ows.wcs.wcs20.getcov module) shall be removed.

The GDAL driver name obtained from the DataPackageWrapper
implementation  shall be translated at runtime to the respective MIME type using
the functionality provided by eoxserver.resources.coverages.formats
module (inluding the translation from the source MIME type to the WCS 2.0.1
native MIME type).




Changes to the Administration Tools

The create_instance command shall copy the template format configuration
file to the conf directory of the instance.

The Coverage Managers shall store the GDAL driver name of the native format in
the database.






Voting History





	Motion:	To accept RFC 17


	Voting Start:	2012-05-11


	Voting End:	2012-05-17


	Result:	+5 for ACCEPTED








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    RFC 18: Operator Interface Architecture
    
    

    
 
  
  

    
      
          
            
  
RFC 18: Operator Interface Architecture





	Author:	Stephan Krause, Fabian Schindler


	Created:	2012-05-08


	Last Edit:	$Date$


	Status:	PENDING


	Discussion:	n/a





The new Operator Interface of EOxServer shall become the main entrance point
for operators who want to administrate an EOxServer instance. The Web UI design
shall focus on usability and support for frequent administration tasks.

The architecture of the Operator Interface shall be modular and extensible in
order to accomodate for future extension and facilitate the maintenance of the
software.


Introduction

At the moment operators have two possibilities to administrate an EOxServer
instance:


	Command Line Tools

	Administration Web Client



The current Administration Client implementation is based on the
django.contrib.admin [https://docs.djangoproject.com/en/1.8/ref/contrib/admin/#module-django.contrib.admin] package and very tightly coupled with the data
model of EOxServer. Whereas this approach has made the development
considerably easier it has several severe drawbacks with respect to usability
and safety of the system:


	the EOxServer data model is fairly complicated and handling it requires a deep
understanding of the EO-WCS standard as well as Django concepts like model
inheritance

	certain actions trigger long-running processing tasks on the server side that
are so far hidden from the operators

	there is no support for asynchronous requests which would be the preferred
method

	error reporting and status monitoring is only minimal

	the current Admin Interface allows to edit database records without checks
for consistency; the danger of breaking the system unintentionally is quite
high



Therefore a new web-based Operator Interface shall be designed that facilitates
the administration tasks. It shall be more usable in the sense that


	the design shall focus on frequent administration tasks rather than the data
model

	the interface shall provide guidance for operators

	safety shall be increased by checking the consistency of input data and
organizing the operator actions in a way that precludes unintentionally
breaking the system

	the operator shall have an overview of the processing tasks going on in the
backend



From the software point of view, the design shall focus on


	modularity and extensibility, thus preparing for future extensions of
EOxServer and increasing maintainability

	reusing existing administration code like Coverage Managers

	separation of model, view and controller components where model and controller
components should be concentrated on the server side and the view on the
client side






Requirements

The Operator Interface shall support the most frequent tasks for administration.
These include:


	registering a Dataset

	handling the Range Types

	creating a Dataset Series

	creating a Stitched Mosaic

	deleting a Dataset, Dataset Series or Stitched Mosaic

	adding a Dataset to a Dataset Series or Stitched Mosaic

	removing a Dataset from a Dataset Series or Stitched Mosaic

	creating / adding / removing a data source to/from a Dataset Series or
Stitched Mosaic

	viewing the logs

	enabling / disabling of components

	user management






Basic Concepts


[image: ../_images/opclient_uml.png]
The Operator Interface structure expressed in a UML class diagram.



The Operator Interface shall be organized in so called Operator Components.
Operator Components correspond to groups of related packages and modules of
EOxServer or its extensions. The most important components at the moment
are eoxserver.core and eoxserver.resources.coverages.

An Operator Component bundles Actions and Views related to the specific
EOxServer component in the backend.

Actions provide an interface for operators to edit the system configuration
including the data and metadata stored in the database. Most Actions are
related to resources, e.g. coverages or Dataset Series.

In order to make the functionality of these Actions available, the Operator
Interface shall include Action Views. Action Views shall group actions and
information that are closely related to each other.

Each Operator Component may contain several Action Views. They represent a UI
for access to the actions in the backend. Several Actions may be attached to a
single Action View, and Actions may appear in several Action Views.

For example, an Action View might show a list of Rectified Datasets with
basic metadata which allows to create and delete items. Creation and deletion
should each be modeled as Actions on the server side. Another Action View may
show the whole information for a single Rectified Dataset and include
forms and inputs to edit the metadata.

As far as possible, the Action Views should be composed of reusable Widgets.
Widgets consist of HTML and/or JavaScript. The aforementioned list of
Rectified Datasets would be a typical example. It could be used also in the
Dataset Series View.

The core implementation of the Operator Interface shall provide reusable
components to build Widgets of (e.g. lists ...).

The communication between the Action Views and the underlying Actions should
be done via specific Interfaces. One REST-based interface shall be implemented
whiche shall allow to read data and metadata to be displayed, and one
RPC-based interface shall be implemented in order to trigger actions on the
server side.




Detailed Concept Description

In this chapter, the introduced concepts will be elaborated in detail.


Layout of the Operator Interface

The entry point to the operator interface shall be a dashboard-like page. It is
envisaged to present a tab for each Operator Component; this tab shall
contain an overview of the Action Views the Operator Component exhibits.

So, on the client side, each Operator Component should provide:


	A name for the Operator Component that will be shown as caption of the
tab

	the overview of the Operator Component, which links to the Action Views

	the Action Views

	the Widgets used in the Action Views

	a widget to be displayed on the entry page dashboard (optional)



Each visual representation of the Operator Interface, namely the entry page
dashboard, the Operator Component overview and the Action Views consist of:


	A Django HTML template

	A JavaScript View class

	A python class, entailing arbitrary information and “glue” between the other
two parts



Only the third part needs to be adjusted when creating a new visual element,
for both the template and the JavaScript class defaults shall help with the
usage.

Action Views and Operator Component overviews should fit into the same basic
layout; customizable CSS should be used for styling. The design of the entry
page design (dashboard) may differ from the design of the sub-pages.




Components and Operator Components

Proposed Operator Components:


	User Management

	Configuration Management

	Action Control Center

	Coverages






Action Views

Proposed Action Views:


	User Management
	add/delete users

	edit permissions





	Configuration Management
	enable and disable components

	edit configuration settings





	Action Control Center
	overview over running and completed actions

	detail views for actions, including status and logs





	Coverages
	For both Rectified and Referenceable datasets:
	list view including limited update and delete actions

	detail view including update and delete actions

	create view to create a new dataset





	For both Rectified Stitched Mosaics and Dataset Series
	list view including limited update and delete actions

	detail view including update, delete and synchronize actions and a
list display of all contained datasets and data sources including actions
to insert/remove data sources or datasets

	create view to create a new dataset





	list view of Range Types with create, limited update and delete actions

	detail view of Range Types with update and delete actions and a list
display of all included Bands with update actions

	list view of Nil Values with create, update and delete actions










Actions

The Actions shall be represented by corresponding Python classes on the
server side. Actions shall be reusable in the sense that they can also be
invoked using a CLI command.

Most Actions are tied to resources like coverages. Resources in that sense
should not be confused with database models. In most cases, a resource will be
tied to a higher-level object: coverage resources for instance shall be tied to
the wrappers defined in eoxserver.resources.coverages.wrappers.

It should be possible to invoke Actions in synchronous and asynchronous mode.
For the asynchronous mode, the existing facilities of the Asynchronous Task Processing
(the eoxserver.resources.processes) shall be adapted and extended. For
this purpose, the eoxserver.resources.processes.models.LogRecord shall
receive an additional field level, which specifies the log level the log
record was created with. This allows easy filtering for a minimum log level and
e.g: only show errors and warnings raised during a process.

Every Action shall expose methods to


	validate the parameters

	start the Action and return the ID of that action

	stop the Action

	check the status of the Action

	check the log messages issued by the Action (maybe this is better implemented
using the Resource mechanism)



On the client side, Actions are wrapped with ActionProxy objects that offer an
easy API and abstraction for the remote invocation of the Actions methods. For
Asynchronous Action the AsyncActionProxy offers a specialization.




Resources

Resources are an interface to the data stored as models in the database but
also custom data sources are possible. When applied to models, a resource
allows the create, read, update and delete (CRUD) methods, but this may be
restricted per resource for certain models where the modification of data
requires a more elaborate handling.

On the client side, Resources are wrapped in Models and Collections, which
provide a layer of abstraction and handle the communication with and
consume the REST interface offered by the server. A Model is the abstraction of
a single dataset and a Collection is a set of models in a certain context.

Both Models and Collections offer certain events, to which the client can react
in a suitable manner. This may trigger a synchronization of data with the
server or a (re-)rendering of data on the client in an associated view.
Additionally, models offer validation, which can be used for example to check
if all mandatory fields are set, or inputs are syntactically correct.




Interfaces

The following interfaces will be used to exchange data between the server and
the client:


RPC Interface

Actions shall be triggered via the RPC Interface. Invocation from the Operator
Interface can be synchronous or asynchronous. Incoming requests from the
Operator Interface shall be dispatched to the respective Actions using a
common mechanism that implements the following workflow:


	validate the parameters conveyed with the request, using the Action interface

	in case they are invalid, return an error code

	in case they are valid, proceed

	queue the Action in the asynchronous processing queue

	return a response that contains the Action ID



Using the Action ID, the Operator Interface can


	check the status of the Action

	view the log messages issued by the Action

	cancel the Action






REST Interface

The REST interface shall be used for resource data retrieval and simple
modification. Usually a REST interface is tightly bound to a database model
and its fields. Thus modification of data via REST should only be possible
in simple situations where there is no dependency tp other resources and no
other synchronization mechanism necessary.

Where the REST interface is not applicable, the RPC interface shall be used.






Directory Structure

For the server part, the directory structure of the operator interface follows
the standard guidelines for Django apps (as created with the django-admin.py
startapp command):

operator/
|-- action.py
|-- common.py
|-- component.py
|-- __init__.py
|-- resource.py
|-- sites.py
|-- static
|   `-- operator
|       |-- actions.js
|       |-- actionviews.js
|       |-- componentviews.js
|       |-- main.js
|       |-- router.js
|       `-- widgets.js
`-- templates
    `-- operator
        |-- base_actionview.html
        |-- base_component.html
        `-- operatorsite.html





In the templates directory all Django templates are held. It is encouraged to
use the same scheme for all components to be implemented.

The static files are placed in the sub-folder “operator” which serves as a
namespaces for javascript module retrieval. All components shall use an
additional unique subfolder to avoid collision. For example:
“operator/coverages”.








Implementation Details

In this chapter, the proposed implementation API of components explained.


Implementing Components

To create a component, one simply shall have to subclass the abstract base
class provided by the Operator Interface API. It shall be easily adjustible
by using either a custom JavaScript view class or a different django template.

To further improve the handling of components, several default properties
within the subclass can be used, like title, name, description or others. Of
course default values shall be provided.

Components are registered by the Operator Interface API function
register(), which shall be sufficient to append it to the visualized
components.

Example:

import operatorinterface as operator

class MyAComponent(operator.Component):
    dependencies = [SomeOtherComponent]
    name = "ComponentA"
    javascript_class = "operator/component/MyAComponentView"

operator.site.register(MyAComponent)








Implementing Action Views

The implementation of action views is very much like the implementation of
components and should follow the same rules concerning JavaScript view classes
and django templates.

Additionally it shall have two fields named actions and resources, each
is a list of Action or Resource classes.

Example:

class MyTestActionView(operator.ActionView):
    actions = [MyTestAction]
    resources = [ResourceA, ResourceB]
    name = "mytestactionview"
    javascript_class = "operator/component/MyTestActionView"








Implementing Resources

Implementing Resources should be as easy as implementing actions. As with
Actions, Resources are implemented by subclassing the according abstract base
class and providing several options. The only mandatory arguments shall be the
Django model to be externalized, optional are the permissions required for this
resource, maybe means to limit the acces to read-/write-only (maybe coupled
to the provided permissions) and the inc-/exclusion of model fields.

Example:

class MyResource(ModelResource):
    model = MyModel
    exclude = ( ... )
    include = ( ... )
    permissions = [ ... ]








Implementing Actions

To implement a new Action, it shall be enough to inherit from an abstract base
class and implement the required methods. Once registered the operator
framework shall handle the URL and method registration.

Example:

class ProgressAction(BaseAction):
    name = "progressaction"
    permissions = [ ... ]

    def validate(self, params):
        ...

    def start(self):
        ...

    def status(self, obj_id):
        ...

    def stop(self, obj_id):
        ...

    def view_logs(self, obj_id, timeframe=None):
        ...








Access Control

The Operator Interface itself, its Resources and its Actions shall only be
accessible for authorized users. Also, the Interface shall distinguish between
at least two types of users: administrative users and users that only have
reading permissions and are not allowed to alter data. The permissions shall
be able to be set fine-grained, on a per-action or per-resource basis.

It is proposed to use the Django buil-in auth framework and its integrations in
other software frameworks.




Configuration and Registration of Components

On the server side, the Operator Interface is set up similar to the Djangos
built-in Admin Interface. To enable the Operator Interface, its app identifier
has to be inserted in the INSTALLED_APPS list setting and its URLs have to be
included in the URLs configuration file.

Also similar to the Admin Interface, the Operator Interface provides an
autodiscover() function, which sweeps through all INSTALLED_APPS
directories in search of a operator.py module, which shall contain the apps
setup of Components, Action Views, Actions and Resources.






Example Component: Coverage Component

This chapter explains an the example component to handle all kinds of
interactions concerning coverages, mosaics and dataset series respectively all
types of assorted metadata.


Requirements

As described earlier, the interactions shall entail creating/updating/deleting
coverages and containers aswell inserting coverages into containers.
Additionally users shall also trigger a synchronization process on rectified
stitched mosaics and dataset series. As this may well be a time-consuming task,
scanning through both the database and the (possibly remote) filesystem, it
shall be handled asynchronously and output status messages.

Last but not least, all coverage metadata shall also be handled, including
geo-spatial, earth observational and raster specific metadata.

The above requirements can be summarized in the following groups:



	Coverage Handling (also includes geospatial and EO-meta-data as the
relation is one-to-one)

	Container Handling (same as above)

	Range Type Handling (as other more tied meta-data is handled in the other
sections)






The requirement groups will be implemented as Action Views on the client, using
specific widgets to allow interaction.




Server-Side implementation

The identified requirements have several implications on the server side. First
off the three Action Views need to be declared to implement the three groups of
reqiurements listed above and suited with the needed resources and actions.


Resources

For simple access to the internally stored data, a list of Resources need to be
defined: one for each coverage/container type, one for range types, bands and
nil values and also for data sources.

For asynchronous tasks, also the running tasks and their logs need to be
exposed as resources.




Actions

The actions derived from the requirements can be summarized in the following
list: add coverage to a container, remove a coverage from a container, add a
data source to a container, remove a datasource from a container, manually
start a synchronization process for a container. The first two actions can
likely be handled synchronously as the management overhead is potentially not
as high as with the latter three actions. Thus the introduced actions can be
split into synchronous and asynchronous actions.

Additionally, for creating/deleting coverages and containers is done by using
Actions instead of their Resources, because it involves a higher order of
validation and additional tasks to be done which are too complex and unreliable
if controlled by the server.




Summary

The following classes with their according hierarchical structure has been
identified.









	Component
	Action Views
	Resources
	Actions




	Coverages
	Coverage Handling
	Rect. Coverages
	Add to Container


	Ref. Coverages
	Remove from Container


	Rect. Mosaics
	Create Coverage


	Range Types
	Delete Coverage


	Bands
	 


	NilValues
	 


	Container Handling
	Coverages
	Add Coverage


	Rect. Mosaics
	Remove Coverage


	Dataset Series
	Add Datasource


	Logs
	Remove Datasource


	 
	Synchronize


	Create Container


	Delete Container


	RangeType Handling
	Range Types
	 


	Bands
	 


	NilValues
	 










Client-Side implementation

From the requirements we allready have designed three Action Views, which will
be implemented as Backbone views. Each offered resource from the server will
have a Backbone model/collection counterpart communicating with that interface.
Similarily each action will have a proxy class on the client side.


Views

The hierarchy of the client views can be seen in the following figure.


[image: ../_images/client_views.png]
The client views/widget hierarchy.






Models/Collection

Each offered resource is encapsulated in a model and collection. The following
figure shows the relation of the model/collection layout:


[image: ../_images/client_models.png]
The models/collection hierarchy on the client.






ActionProxies

For each Action on the server, an ActionProxy has to be instantiated on the
client which handle the communication with the server. For the three Actions
that are running asynchronously, a special ActionProxy subclass is used. The
following figure shows which actions are handled synchronously and which follow
an asynchronous approach.


[image: ../_images/client_action_proxies.png]
The action proxies used on the client.










Technologies Used

On the server side, the Django framework shall be used to provide the basic
functionality of the Operator Interface including specifically the URL setup,
HTML templating and request dispatching.

To help publishing RESTful resources, the django extension Django REST
framework [http://django-rest-framework.org/] can be used. It provides a
rather simple, yet customizeable access to database model. It also supports
user authorization as required in the chapter Access Control. The library
is available under the BSD license.

To provide the RPC interface, there are two possibilities. The first is a
wrapped setup of the SimpleXMLRPCServer module [http://docs.python.org/library/simplexmlrpcserver.html], which would
represent an abstraction of the XML to the actual entailed data and the
dispatching of registered functions. As the module is already included in the
standard library of recent Python versions, this approach would not impose an
additional dependency. A drawback is the missing user authorization, which has
to be implemented manually. Also, this method is only suitable for XML-RPC,
which is more verbose than its JSON counterpart.

The second option would be to use a django extension framework, e.g
rpc4django [http://davidfischer.name/rpc4django/]. This framework eases the
setup of RPC enabled functions, provides user authorization an is agnostic to
the RPC protocol used (either JSON- or XML-RPC). This library also uses the BSD
license.

On the client side, several JavaScript libraries are required. For DOM
manipulation and several utility functions jQuery [http://jquery.com/] and
jQueryUI [http://jqueryui.com/] are used. The libraries are licensed under
the GPL and MIT licenses.

As a general utility library and dependency for other module comes Underscore [http://underscorejs.org/]. To implement a working MVC layout,
Backbone [http://backbonejs.org/] is suggested. This library also abstracts
the use of REST resources. Both libraries are distributed under the MIT
license.

For calling RPC functions and parsing the output, the library rpc.js [https://github.com/westonruter/json-xml-rpc] is required. It adheres to
either the JSON-RPC or the XML-RPC protocol. The library is dual-licensed under
the MIT and the GPL license.

To display larger amounts of objects and to efficiently manipulate them, the
SlickGrid [https://github.com/mleibman/SlickGrid] and its integration with
Backbone, Slickback [https://github.com/teleological/slickback] are used.
The two libraries are both licensed under the MIT license.

For easy management of javascript files in conjunction with other resources the
requirejs [http://requirejs.org/] framework is included. It provides means
to modularize javascript code and resolve dependencies. The toolset also
includes an optimizer which merges and minimizes all modules into a single
javascript file with no changes to the client code. The framework is published
under both MIT and BSD license.

To avoid incompatibilities and third party server dependencies, all javascript
libraries will be served from the EOxServer static files. This implies that for
the operator client-side libraries no additional software needs to be installed
as EOxServer ships with all requirements.

On the server-side the two packages rpc4django and djangorestframework need
to be installed for the operator to function. As both libraries can be found on
the Python Package Index (PyPI) the installation procedure using pip is
straightforward when both dependencies are added to the EOxServer setup.py.

When EOxServer is installed using another technique than pip (like using the
RPM or Debian packages), the libraries will likely have to be installed
manually. For this reason they have to be listed in the dependencies page in
the user manual aswell.









	Dependency
	Cat.
	License
	Purpose




	Django REST Framework
	Server
	BSD
	Expose server data via REST


	RPC 4 Django
	Server
	BSD
	Expose server methods via RPC


	jQuery
	Client
	GPL/MIT
	DOM Manipulation / AJAX Client


	UnderscoreJS
	Client
	MIT
	General Javascript utilities


	BackboneJS
	Client
	MIT
	MVC Framework, REST abstraction


	json-xml-rpc
	Client
	GPL/MIT
	RPC client


	SlickGrid
	Client
	MIT
	Data Grid widget implementation


	Slickback
	Client
	MIT
	SlickGrid to Backbone bridge


	requirejs
	Client
	MIT/BSD
	Modularization and optimization








Voting History

N/A




Traceability





	Requirements:	N/A


	Tickets:	http://eoxserver.org/ticket/4











          

      

      

    

  

  
    
    
    RFC 19: Migrate project repository from svn to git
    
    

    
 
  
  

    
      
          
            
  
RFC 19: Migrate project repository from svn to git





	Author:	Marko Locher


	Created:	2013-04-05


	Last Edit:	$Date$


	Status:	ACCEPTED


	Discussion:	n/a





Migrating from Subversion to git and in the process also switch from Trac to
github.

(Credit: Inspired by MapServer’s RFC 84 at:
http://mapserver.org/development/rfc/ms-rfc-84.html)


Introduction

While svn suits our needs as a collaborative source code version management
system, it has shortcomings that make it difficult to work with for
developpers working on multiple tasks in parallel. Git’s easy branching
makes it possible to set up branches for individual task, isolating code
changes from other branches, thus making the switch from one task to another
possible without the risk of loosing or erroneously commiting
work-in-progress code. Three-way merging of different branches means that
merging code from one branch to another becomes a rapid task, by only having
to deal with actual conflicts in the code. Offline committing and access to
entire history make working offline possible.

There is already somewhat of a consensus that the migration from svn to git
is a good move. Discussion remains as to how this transition should be
performed. This RFC outlines the different options available for hosting the
official repository, and the different options available for our ticket
tracking.

Current investigation has retained two majors options that we could go down
with:


	Repository migrated to github, use github provided issue tracking. This
option will be referred to as “Github hosting”.

	Repository hosted by EOX, current trac instance migrated to hook on the
new repository. This option will be referred to as “EOX hosting”






Github hosting

This option consists in moving our entire code+ticket infrastructure
to github. The current trac instance becomes nearly read-only, new
tickets cannot be created on it. Existing tickets are migrated to github
with a script taking a trac postgresql dump (once the migration starts,
our trac instance becomes read-only).




Advantages


	Code hosting:





	No need to worry about hosting infrastructure

	Can be up and running with a short delay

	Support for pull requests, allowing external contributions to be rapidly
merged into our repository

	Online code editing for quick fixups

	Github visualization tools, for example to check which branches are likely
to contain conflicting code sections

	Code and patch commenting make collaboratively working on a given feature
very lightweight, i.e. just add your comment on the code line which seems
problematic to you

	Documentation contributions highly simplified for one-shot contributions







	Issue tracking:





	Integration of ticket state with commit messages (e.g: “fix mem allocation
in mapDraw(), closes issue #1234

	Email replies to ticket notifications

	The free-form label tagging of issues might open up some interesting usages

	Versionned text-base attachments (gists), with commenting









Inconveniences


	Hosting by a private company, which might become an issue if their TOS evolve
or if they go out of business. The source code availability is not an
issue as is possible to maintain a mirror on any server, and each
developer has a checkout of the full source control history. Ticket
migration would be an issue, but there are APIs available to extract
existing tickets.

	Issue tracker is in some ways less feature full than trac. The only hard
coded attributes are the assignee and the milestone. All the other
triaging information goes into free formed labels, a la gmail.





	No way to automatically assign a ticket owner given a component

	No support for image attachments, can be referenced by url but must be
hosted elsewhere.

	No support for private security tickets







	Administering committer access will be done through github, old
credentials do not apply. Git does not support fine-grained commit
permissions per directory, there will be a separate repository for the
docs to account for the larger number of committers there.






Git Workflows


Stable Branches

This document outlines a workflow for fixing bugs in our stable branches:
http://www.net-snmp.org/wiki/index.php/Git_Workflow I believe it is a very
good match for our stable release management:


	pick the oldest branch where the fix should be applied

	commit the fix to this oldest branch

	merge the old branch down to all the more recent ones, including master






Release Management

Instead of freezing development during our beta cycle, a new release branch
is created once the feature freeze is decided, and our betas, releases and
subsequent bugfix releases are tagged off of this branch. Bug fixes are
committed to this new stable branch, and merged into master. New features
can continue to be added to master during all the beta phase.
http://nvie.com/posts/a-successful-git-branching-model/ is an interesting
read even if it does not fit our stable release branches exactly.






Upgrade path for svn users

For those users who do not wish to change their workflow and continue with
svn commands. This is not the recommended way to work with git, as local or
remote changes might end up in having conflicts to resolve, like with svn.

Checkout the project

git clone git@github.com:EOX-A/eoxserver





Update

git pull origin master





Commit changes

git add [list of files]
git commit -m “Commit message”
git push origin master





Fix a bug in a branch, and merge the fix into master

git checkout feature-branch
git add [list of files]
git commit -m “Commit message”
git push origin feature-branch
git checkout master
git merge feature-branch
git push origin master








Tasks


	import svn to git

	assign github users

	split into sub-projects:





	eoxserver

	autotest

	docs

	soap_proxy







	document release process

	migrate website scripts

	switch trac site to read-only






Voting History





	Motion:	Adopted on 2013-05-15 with +1 from Stephan Meißl, Fabian Schindler,
and Martin Paces








Traceability





	Requirements:	N/A


	Tickets:	N/A











          

      

      

    

  

  
    
    
    Release Notes
    
    

    
 
  
  

    
      
          
            
  
Release Notes

Release notes from various versions of EOxServer.



	EOxServer 0.3.1

	EOxServer 0.3.2

	EOxServer 0.4









          

      

      

    

  

  
    
    
    EOxServer 0.3.1
    
    

    
 
  
  

    
      
          
            
  
EOxServer 0.3.1


	Migrated to GitHub.

	Added Vagrant configuration

	Fixing several bugs.

	Updated build process by adding support for usage of a custom GDAL
transformer needed for ENVISAT data having a big number of GCPs.







          

      

      

    

  

  
    
    
    EOxServer 0.3.2
    
    

    
 
  
  

    
      
          
            
  
EOxServer 0.3.2


	Switched to EOX Maps layers for background and new overlay in WebClient and Admin

	Added documentation as submodule for readthedocs.org

	Adjusting check_method_and_order() in reftools

	Improved transformer suggestion for ‘vertical-outlines’ tie-points’ set as
used in ngeo-b

	Actually raising RuntimeErrors in check of geographic metadata

	Reproject flipped images even if projections are the same in preprocessing







          

      

      

    

  

  
    
    
    EOxServer 0.4
    
    

    
 
  
  

    
      
          
            
  
EOxServer 0.4

This major release introduced a lot of new features since the last stable
version and included a major restructuring of many of EOxServer internals.


New Data Models

The 0.4 release overhauled the previous data models to provide a more efficient,
flexible and performant way to query and insert data.

More important is that the introduction of the new data models made the
Data Integration Layer obsolete. Only Django’s QuerySet [https://docs.djangoproject.com/en/dev/ref/models/querysets/] are necessary
for all data model related tasks. Especially for large datasets this mechanism
improves the overall performance drastically.

The new backends data models provide a more flexible approach for additional
data sources and packages that can be realised using the New Plugin System.




New Plugin System

The new plugin system was introduced to make the extension of functionality
easier, more efficient and less error prone. For this reason trac’s plugin
system [http://trac.edgewall.org/wiki/TracDev/ComponentArchitecture] was
copied and added to the EOxServer source tree.

The configuration of the plugins are not done in the settings.py file
instead of the database.




Miscallaneus Internal Improvements

Various internal APIs have been revised and improved.


Decoders

A new API for decoding config files, XML files and KVP requests has been
established. It has a large spectrum of functionality and allows to parse
requests to actual Python types with proper validity checking.




Backends

A new backend data retrieval and cache system was implemented. This goes inline
with the new data models and plugin system to easily extend the existing storage
possibilities.




XML Encoding

A new XML encoding mechanism on top of lxml [http://lxml.de/] was
implemented which is an order of magnitude faster than the previous dom [https://docs.python.org/2/library/xml.dom.html] based solution.






Management Commands

All management commands have been revisited and streamlined to their respective
core functionality.

For convenience there now is a bulk ingestion command to allow a fast way to
register a large number of datasets with a prepared CSV file.




Service Improvements

Also on the outward side of EOxServers capabilities a lot has been achieved.
The service layer makes extensive use of the new Plugin system which makes it
easy to add new services, renderers, connectors and whatever else is required.


WCS 2.0

EOxServer now fully supports the following WCS 2.0 service extensions:



	Scaling Extension [https://portal.opengeospatial.org/files/12-039]

	Interpolation Extension [https://portal.opengeospatial.org/files/12-049]

	RangeSubsetting Extension [https://portal.opengeospatial.org/files/12-040]

	CRS Extension [https://portal.opengeospatial.org/files/11-053]

	GeoTIFF Encoding Extension [https://portal.opengeospatial.org/files/?artifact_id=54813]









WMS (all versions)

The WMS rendering was rewritten from scratch to allow various additional layer
types, input data and storage forms.

WMS mask layers allow the visualization of various mask types (clouds, snow,
low quality or the like) either in a colorized manner or as a cutout of the
original raster.




WPS 1.0

EOxServer now supports synchronus processes invocation via the WPS 1.0 protocol.
Processes are components that are easily written and plugged into any EOxServer
instance.






Webclient

The existing webclient was replaced by a custom build of EOxClient [https://github.com/EOX-A/EOxClient]. It allows the inspection of more than
one collection or dataset and features a dynamic timeline to ease the visual
inspection of large datasets.







          

      

      

    

  

  
    
    
    API Reference
    
    

    
 
  
  

    
      
          
            
  
API Reference


Subpackages



	eoxserver.backends package
	Subpackages
	eoxserver.backends.packages package
	Submodules

	eoxserver.backends.packages.tar module

	eoxserver.backends.packages.zip module

	Module contents





	eoxserver.backends.storages package
	Submodules

	eoxserver.backends.storages.ftp module

	eoxserver.backends.storages.http module

	eoxserver.backends.storages.local module

	eoxserver.backends.storages.rasdaman module

	Module contents









	Submodules

	eoxserver.backends.access module

	eoxserver.backends.cache module

	eoxserver.backends.component module

	eoxserver.backends.config module

	eoxserver.backends.interfaces module

	eoxserver.backends.middleware module

	eoxserver.backends.models module

	eoxserver.backends.testbase module

	Module contents





	eoxserver.contrib package
	Submodules

	eoxserver.contrib.gdal module

	eoxserver.contrib.gdal_array module

	eoxserver.contrib.mapserver module

	eoxserver.contrib.ogr module

	eoxserver.contrib.osr module

	eoxserver.contrib.vrt module

	eoxserver.contrib.vsi module

	Module contents





	eoxserver.core package
	Subpackages
	eoxserver.core.decoders package
	Submodules

	eoxserver.core.decoders.base module

	eoxserver.core.decoders.config module

	eoxserver.core.decoders.kvp module

	eoxserver.core.decoders.xml module

	Module contents





	eoxserver.core.util package
	Submodules

	eoxserver.core.util.functools module

	eoxserver.core.util.geotools module

	eoxserver.core.util.importtools module

	eoxserver.core.util.iteratortools module

	eoxserver.core.util.multiparttools module

	eoxserver.core.util.perftools module

	eoxserver.core.util.rect module

	eoxserver.core.util.timetools module

	eoxserver.core.util.xmltools module

	Module contents









	Submodules

	eoxserver.core.component module

	eoxserver.core.config module

	eoxserver.core.management module

	eoxserver.core.models module

	eoxserver.core.views module

	Module contents





	eoxserver.processing package
	Subpackages
	eoxserver.processing.gdal package
	Submodules

	eoxserver.processing.gdal.reftools module

	eoxserver.processing.gdal.vrt module

	Module contents





	eoxserver.processing.preprocessing package
	Submodules

	eoxserver.processing.preprocessing.exceptions module

	eoxserver.processing.preprocessing.format module

	eoxserver.processing.preprocessing.georeference module

	eoxserver.processing.preprocessing.optimization module

	eoxserver.processing.preprocessing.util module

	Module contents









	Submodules

	Module contents





	eoxserver.resources package
	Subpackages
	eoxserver.resources.coverages package
	Subpackages
	eoxserver.resources.coverages.metadata package
	Subpackages
	eoxserver.resources.coverages.metadata.formats package
	Submodules

	eoxserver.resources.coverages.metadata.formats.dimap_general module

	eoxserver.resources.coverages.metadata.formats.eoom module

	eoxserver.resources.coverages.metadata.formats.gdal_dataset module

	eoxserver.resources.coverages.metadata.formats.gdal_dataset_envisat module

	eoxserver.resources.coverages.metadata.formats.inspire module

	eoxserver.resources.coverages.metadata.formats.native module

	Module contents









	Submodules

	eoxserver.resources.coverages.metadata.component module

	eoxserver.resources.coverages.metadata.interfaces module

	Module contents









	Submodules

	eoxserver.resources.coverages.crss module

	eoxserver.resources.coverages.dateline module

	eoxserver.resources.coverages.formats module

	eoxserver.resources.coverages.models module

	eoxserver.resources.coverages.rangetype module

	eoxserver.resources.coverages.util module

	Module contents





	eoxserver.resources.processes package
	Submodules

	eoxserver.resources.processes.admin module

	eoxserver.resources.processes.models module

	eoxserver.resources.processes.tracker module

	eoxserver.resources.processes.views module

	Module contents









	Module contents





	eoxserver.services package
	Subpackages
	eoxserver.services.auth package
	Submodules

	eoxserver.services.auth.base module

	eoxserver.services.auth.charonpdp module

	eoxserver.services.auth.dummypdp module

	eoxserver.services.auth.exceptions module

	eoxserver.services.auth.interfaces module

	eoxserver.services.auth.middleware module

	Module contents





	eoxserver.services.gdal package
	Subpackages
	eoxserver.services.gdal.wcs package
	Submodules

	eoxserver.services.gdal.wcs.referenceable_dataset_renderer module

	Module contents









	Module contents





	eoxserver.services.gml package
	Subpackages
	eoxserver.services.gml.v32 package
	Submodules

	eoxserver.services.gml.v32.encoders module

	Module contents









	Module contents





	eoxserver.services.mapserver package
	Subpackages
	eoxserver.services.mapserver.connectors package
	Submodules

	eoxserver.services.mapserver.connectors.multifile_connector module

	eoxserver.services.mapserver.connectors.polygonmask_connector module

	eoxserver.services.mapserver.connectors.simple_connector module

	eoxserver.services.mapserver.connectors.tileindex_connector module

	Module contents





	eoxserver.services.mapserver.wcs package
	Submodules

	eoxserver.services.mapserver.wcs.base_renderer module

	eoxserver.services.mapserver.wcs.capabilities_renderer module

	eoxserver.services.mapserver.wcs.coverage_description_renderer module

	eoxserver.services.mapserver.wcs.coverage_renderer module

	Module contents





	eoxserver.services.mapserver.wms package
	Subpackages
	eoxserver.services.mapserver.wms.layerfactories package
	Submodules

	eoxserver.services.mapserver.wms.layerfactories.base module

	eoxserver.services.mapserver.wms.layerfactories.colorized_mask_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_bands_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_mask_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_masked_outlines_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_outlines_layer_factory module

	Module contents





	eoxserver.services.mapserver.wms.styleapplicators package
	Submodules

	eoxserver.services.mapserver.wms.styleapplicators.sld module

	Module contents









	Submodules

	eoxserver.services.mapserver.wms.capabilities_renderer module

	eoxserver.services.mapserver.wms.feature_info_renderer module

	eoxserver.services.mapserver.wms.legendgraphic_renderer module

	eoxserver.services.mapserver.wms.map_renderer module

	eoxserver.services.mapserver.wms.util module

	Module contents









	Submodules

	eoxserver.services.mapserver.interfaces module

	Module contents





	eoxserver.services.native package
	Subpackages
	eoxserver.services.native.wcs package
	Submodules

	eoxserver.services.native.wcs.capabilities_renderer module

	eoxserver.services.native.wcs.coverage_description_renderer module

	Module contents









	Module contents





	eoxserver.services.ows package
	Subpackages
	eoxserver.services.ows.common package
	Subpackages
	eoxserver.services.ows.common.v11 package
	Submodules

	eoxserver.services.ows.common.v11.encoders module

	Module contents





	eoxserver.services.ows.common.v20 package
	Submodules

	eoxserver.services.ows.common.v20.encoders module

	eoxserver.services.ows.common.v20.exceptionhandler module

	Module contents









	Submodules

	eoxserver.services.ows.common.config module

	Module contents





	eoxserver.services.ows.wcs package
	Subpackages
	eoxserver.services.ows.wcs.v10 package
	Submodules

	eoxserver.services.ows.wcs.v10.describecoverage module

	eoxserver.services.ows.wcs.v10.exceptionhandler module

	eoxserver.services.ows.wcs.v10.getcapabilities module

	eoxserver.services.ows.wcs.v10.getcoverage module

	eoxserver.services.ows.wcs.v10.parameters module

	eoxserver.services.ows.wcs.v10.util module

	Module contents





	eoxserver.services.ows.wcs.v11 package
	Submodules

	eoxserver.services.ows.wcs.v11.describecoverage module

	eoxserver.services.ows.wcs.v11.exceptionhandler module

	eoxserver.services.ows.wcs.v11.getcapabilities module

	eoxserver.services.ows.wcs.v11.getcoverage module

	eoxserver.services.ows.wcs.v11.parameters module

	eoxserver.services.ows.wcs.v11.util module

	Module contents





	eoxserver.services.ows.wcs.v20 package
	Subpackages
	eoxserver.services.ows.wcs.v20.encodings package
	Submodules

	eoxserver.services.ows.wcs.v20.encodings.geotiff module

	Module contents





	eoxserver.services.ows.wcs.v20.packages package
	Submodules

	eoxserver.services.ows.wcs.v20.packages.tar module

	eoxserver.services.ows.wcs.v20.packages.zip module

	Module contents









	Submodules

	eoxserver.services.ows.wcs.v20.describecoverage module

	eoxserver.services.ows.wcs.v20.describeeocoverageset module

	eoxserver.services.ows.wcs.v20.encoders module

	eoxserver.services.ows.wcs.v20.exceptionhandler module

	eoxserver.services.ows.wcs.v20.getcapabilities module

	eoxserver.services.ows.wcs.v20.getcoverage module

	eoxserver.services.ows.wcs.v20.geteocoverageset module

	eoxserver.services.ows.wcs.v20.parameters module

	eoxserver.services.ows.wcs.v20.util module

	Module contents









	Submodules

	eoxserver.services.ows.wcs.basehandlers module

	eoxserver.services.ows.wcs.interfaces module

	eoxserver.services.ows.wcs.parameters module

	Module contents





	eoxserver.services.ows.wms package
	Subpackages
	eoxserver.services.ows.wms.v10 package
	Submodules

	eoxserver.services.ows.wms.v10.getcapabilities module

	eoxserver.services.ows.wms.v10.getfeatureinfo module

	eoxserver.services.ows.wms.v10.getmap module

	Module contents





	eoxserver.services.ows.wms.v11 package
	Submodules

	eoxserver.services.ows.wms.v11.getcapabilities module

	eoxserver.services.ows.wms.v11.getfeatureinfo module

	eoxserver.services.ows.wms.v11.getmap module

	Module contents





	eoxserver.services.ows.wms.v13 package
	Submodules

	eoxserver.services.ows.wms.v13.exceptionhandler module

	eoxserver.services.ows.wms.v13.getcapabilities module

	eoxserver.services.ows.wms.v13.getfeatureinfo module

	eoxserver.services.ows.wms.v13.getlegendgraphic module

	eoxserver.services.ows.wms.v13.getmap module

	Module contents









	Submodules

	eoxserver.services.ows.wms.basehandlers module

	eoxserver.services.ows.wms.exceptions module

	eoxserver.services.ows.wms.interfaces module

	eoxserver.services.ows.wms.util module

	Module contents





	eoxserver.services.ows.wps package
	Subpackages
	eoxserver.services.ows.wps.parameters package
	Submodules

	eoxserver.services.ows.wps.parameters.allowed_values module

	eoxserver.services.ows.wps.parameters.base module

	eoxserver.services.ows.wps.parameters.bboxdata module

	eoxserver.services.ows.wps.parameters.codecs module

	eoxserver.services.ows.wps.parameters.complexdata module

	eoxserver.services.ows.wps.parameters.crs module

	eoxserver.services.ows.wps.parameters.data_types module

	eoxserver.services.ows.wps.parameters.formats module

	eoxserver.services.ows.wps.parameters.inputs module

	eoxserver.services.ows.wps.parameters.literaldata module

	eoxserver.services.ows.wps.parameters.response_form module

	eoxserver.services.ows.wps.parameters.units module

	Module contents





	eoxserver.services.ows.wps.processes package
	Submodules

	eoxserver.services.ows.wps.processes.get_time_data module

	Module contents





	eoxserver.services.ows.wps.v10 package
	Subpackages
	eoxserver.services.ows.wps.v10.encoders package
	Submodules

	eoxserver.services.ows.wps.v10.encoders.base module

	eoxserver.services.ows.wps.v10.encoders.capabilities module

	eoxserver.services.ows.wps.v10.encoders.execute_response module

	eoxserver.services.ows.wps.v10.encoders.execute_response_raw module

	eoxserver.services.ows.wps.v10.encoders.parameters module

	eoxserver.services.ows.wps.v10.encoders.process_description module

	Module contents









	Submodules

	eoxserver.services.ows.wps.v10.describeprocess module

	eoxserver.services.ows.wps.v10.exceptionhandler module

	eoxserver.services.ows.wps.v10.execute module

	eoxserver.services.ows.wps.v10.execute_decoder_kvp module

	eoxserver.services.ows.wps.v10.execute_decoder_xml module

	eoxserver.services.ows.wps.v10.getcapabilities module

	eoxserver.services.ows.wps.v10.util module

	Module contents









	Submodules

	eoxserver.services.ows.wps.exceptions module

	eoxserver.services.ows.wps.interfaces module

	eoxserver.services.ows.wps.test_allowed_values module

	eoxserver.services.ows.wps.test_data_types module

	Module contents









	Submodules

	eoxserver.services.ows.component module

	eoxserver.services.ows.decoders module

	eoxserver.services.ows.interfaces module

	eoxserver.services.ows.version module

	Module contents









	Submodules

	eoxserver.services.exceptions module

	eoxserver.services.models module

	eoxserver.services.parameters module

	eoxserver.services.result module

	eoxserver.services.subset module

	eoxserver.services.urls module

	eoxserver.services.views module

	Module contents





	eoxserver.testing package
	Submodules

	eoxserver.testing.xcomp module

	Module contents





	eoxserver.webclient package
	Submodules

	eoxserver.webclient.models module

	eoxserver.webclient.urls module

	eoxserver.webclient.views module

	Module contents












Submodules




eoxserver.views module


	
eoxserver.views.index(request)

	






Module contents


	
eoxserver.get_version()

	









          

      

      

    

  

  
    
    
    eoxserver.backends package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.backends package


Subpackages



	eoxserver.backends.packages package
	Submodules

	eoxserver.backends.packages.tar module

	eoxserver.backends.packages.zip module

	Module contents





	eoxserver.backends.storages package
	Submodules

	eoxserver.backends.storages.ftp module

	eoxserver.backends.storages.http module

	eoxserver.backends.storages.local module

	eoxserver.backends.storages.rasdaman module

	Module contents












Submodules




eoxserver.backends.access module




eoxserver.backends.cache module




eoxserver.backends.component module




eoxserver.backends.config module




eoxserver.backends.interfaces module


	
class eoxserver.backends.interfaces.AbstractStorageInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]


	
name

	Name of the storage implementation.






	
validate(url)

	Validates the given storage locator and raises a
django.core.exceptions.ValidationError [https://docs.djangoproject.com/en/1.8/ref/exceptions/#django.core.exceptions.ValidationError] if errors occurred.










	
class eoxserver.backends.interfaces.ConnectedStorageInterface

	Bases: eoxserver.backends.interfaces.AbstractStorageInterface

Interface for storages that do not store “files” but provide access to
data in a different fashion.


	
connect(url, location)

	Return a connection string for a remote dataset residing on a
storage specified by the given url and location.





	Parameters:	
	url – the URL denoting the storage itself

	location – the location of the file to retrieve on the storage






	Returns:	a connection string to open the stream to actually
retrieve data
















	
class eoxserver.backends.interfaces.FileStorageInterface

	Bases: eoxserver.backends.interfaces.AbstractStorageInterface

Interface for storages that provide access to files and allow the
retrieval of those.


	
list_files(url, location)

	Return a list of retrievable files available on the storage located
at the specified URL and given location.





	Parameters:	
	url – the URL denoting the storage itself

	location – a template to find items on the storage






	Returns:	an iterable of the storage contents under the specified
location












	
retrieve(url, location, path)

	Retrieve a remote file from the storage specified by the given url
and location and store it to the given path. Storages that don’t
need to actually retrieve and store files, just need to return a
path to a local file instead of storing it under path.





	Parameters:	
	url – the URL denoting the storage itself

	location – the location of the file to retrieve on the storage

	path – a local path where the file should be saved under;
this is used as a hint






	Returns:	the actual path where the file was stored; in some cases
this can be different than the passed path
















	
class eoxserver.backends.interfaces.PackageInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]


	
extract(package_filename, location, path)

	Extract a file specified by the location from the package to the
given path specification.





	Parameters:	
	package_filename – the local filename of the package

	location – a location within the package to be extracted

	path – a local path where the file should be saved under;
this is used as a hint






	Returns:	the actual path where the file was stored; in some cases
this can be different than the passed path












	
list_contents(package_filename, location_regex=None)

	Return a list of item locations under the specified location in the
given package.





	Parameters:	
	package_filename – the local filename of the package

	location_regex – a template to find items within the package






	Returns:	an iterable of the package contents under the specified
location












	
name

	Name of the package implementation.












eoxserver.backends.middleware module




eoxserver.backends.models module




eoxserver.backends.testbase module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.backends.packages package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.backends.packages package


Submodules




eoxserver.backends.packages.tar module




eoxserver.backends.packages.zip module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.backends.storages package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.backends.storages package


Submodules




eoxserver.backends.storages.ftp module




eoxserver.backends.storages.http module




eoxserver.backends.storages.local module




eoxserver.backends.storages.rasdaman module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.contrib package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.contrib package


Submodules




eoxserver.contrib.gdal module

This module imports and initializes GDAL; i.e enables exceptions and registers
all available drivers.




eoxserver.contrib.gdal_array module




eoxserver.contrib.mapserver module




eoxserver.contrib.ogr module




eoxserver.contrib.osr module


	
class eoxserver.contrib.osr.SpatialReference(raw=None, format=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Extension to the original SpatialReference class.


	
IsSame(other)

	




	
proj

	




	
srid

	Convenience function that tries to get the SRID of the projection.






	
swap_axes

	




	
url

	




	
wkt

	




	
xml

	










eoxserver.contrib.vrt module


	
class eoxserver.contrib.vrt.VRTBuilder(size_x, size_y, num_bands=0, data_type=None, vrt_filename=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

This class is a helper to easily create VRT datasets from various
sources.





	Parameters:	
	size_x – the pixel size of the X dimension

	size_y – the pixel size of the Y dimension

	num_bands – the initial number of bands; bands can be added afterwards

	data_type – the GDT data type identifier

	vrt_filename – a path the filename shall be stored at; if none is
specified the dataset will only be kept in memory










	
add_band(data_type=None, options=None, nodata=None)

	Add a band to the VRT Dataset.





	Parameters:	
	data_type – the data type of the band to add. if omitted this is
determined automatically by GDAL

	options – a list of any string options to be supplied to the new
band














	
add_simple_source(band_index, src, src_band, src_rect=None, dst_rect=None)

	Add a new simple source to the VRT.





	Parameters:	
	band_index – the band index the source shall contribute to

	src – either a GDAL Dataset or a file path to the
source dataset

	src_band – specify which band of the source dataset shall
contribute to the target VRT band

	src_rect – a 4-tuple of integers in the form (offset-x, offset-y,
size-x, size-y) or a Rect specifying the source
area to contribute

	dst_rect – a 4-tuple of integers in the form (offset-x, offset-y,
size-x, size-y) or a Rect specifying the target
area to contribute














	
copy_gcps(ds, offset=None)

	Copy the GCPs from the given GDAL Dataset, optionally offsetting them





	Parameters:	
	ds – a GDAL Dataset

	offset – a 2-tuple of integers; the pixel offset to be applied to
any GCP copied














	
copy_metadata(ds)

	Copy the metadata fields and values from the given dataset.





	Parameters:	ds – a GDAL Dataset










	
dataset

	Returns a handle to the underlying VRT GDAL Dataset.






	
classmethod from_dataset(ds, vrt_filename=None)

	A helper function to create a VRT dataset from a given template
dataset.





	Parameters:	ds – a GDAL Dataset














	
class eoxserver.contrib.vrt.VRTBuilder2(size_x, size_y, num_bands=0, data_type=None, vrt_filename=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]


	
add_band(data_type=None, options=None, nodata=None)

	




	
add_simple_source(band_index, src, src_band, src_rect=None, dst_rect=None)

	Add a new simple source to the VRT.





	Parameters:	
	band_index – the band index the source shall contribute to

	src – either a GDAL Dataset or a file path to the
source dataset

	src_band – specify which band of the source dataset shall
contribute to the target VRT band

	src_rect – a 4-tuple of integers in the form (offset-x, offset-y,
size-x, size-y) or a Rect specifying the source
area to contribute

	dst_rect – a 4-tuple of integers in the form (offset-x, offset-y,
size-x, size-y) or a Rect specifying the target
area to contribute














	
build()

	




	
build_sources(sources)

	




	
set_geotransform(geotransform)

	




	
warped_gcps(gcp_dsc, resample='NearestNeighbour', order=0)

	








	
eoxserver.contrib.vrt.get_vrt_driver()

	Convenience function to get the VRT driver.








eoxserver.contrib.vsi module

This module provides Python file-object like access to VSI files.


	
class eoxserver.contrib.vsi.TemporaryVSIFile(filename, mode='r')

	Bases: eoxserver.contrib.vsi.VSIFile

Subclass of VSIFile, that automatically deletes the physical file upon
deletion.


	
close()

	Close the file. This also deletes it.






	
classmethod from_buffer(buf, mode='w', filename=None)

	Creates a TemporaryVSIFile from a string.





	Parameters:	
	buf – the supplied string

	mode – the file opening mode

	filename – the optional filename the file shall be stored under;
by default this is an in-memory location


















	
class eoxserver.contrib.vsi.VSIFile(filename, mode='r')

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

File-like object interface for VSI file API.





	Parameters:	
	filename – the path to the file; this might also be any VSI special
path like “/vsicurl/...” or “/vsizip/...”. See the GDAL
documentation [http://trac.osgeo.org/gdal/wiki/UserDocs/ReadInZip]
for reference.

	mode – the file opening mode










	
close()

	Close the file.






	
closed

	Return a boolean value to indicate whether or not the file is
already closed.






	
filename

	Returns the filename referenced by this file






	
read(size=None)

	Read from the file. If no size is specified, read until the end
of the file.





	Parameters:	size – the number of bytes to be read


	Returns:	the bytes read as a string










	
seek(offset, whence=0)

	Set the new read/write offset in the file.





	Parameters:	
	offset – the new offset

	whence – how the offset shall be interpreted; possible options are
os.SEEK_SET, os.SEEK_CUR and
os.SEEK_END














	
size

	Return the size of the file in bytes






	
tell()

	Return the current read/write offset of the file.





	Returns:	an integer offset










	
write(data)

	Write the buffer data to the file.





	Parameters:	data – the string buffer to be written














	
eoxserver.contrib.vsi.open(filename, mode='r')

	A function mimicking the builtin function
open but returning a VSIFile instead.





	Parameters:	
	filename – the path to the file; this might also be any VSI special
path like “/vsicurl/...” or “/vsizip/...”. See the GDAL
documentation [http://trac.osgeo.org/gdal/wiki/UserDocs/ReadInZip]
for reference.



	mode – the file opening mode






	Returns:	a VSIFile














Module contents

This package provides a common interface to contributing third party libraries
that need some special care when importing or are provided with additional
features.







          

      

      

    

  

  
    
    
    eoxserver.core package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.core package


Subpackages



	eoxserver.core.decoders package
	Submodules

	eoxserver.core.decoders.base module

	eoxserver.core.decoders.config module

	eoxserver.core.decoders.kvp module

	eoxserver.core.decoders.xml module

	Module contents





	eoxserver.core.util package
	Submodules

	eoxserver.core.util.functools module

	eoxserver.core.util.geotools module

	eoxserver.core.util.importtools module

	eoxserver.core.util.iteratortools module

	eoxserver.core.util.multiparttools module

	eoxserver.core.util.perftools module

	eoxserver.core.util.rect module

	eoxserver.core.util.timetools module

	eoxserver.core.util.xmltools module

	Module contents












Submodules




eoxserver.core.component module




eoxserver.core.config module




eoxserver.core.management module




eoxserver.core.models module




eoxserver.core.views module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.core.decoders package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.core.decoders package


Submodules




eoxserver.core.decoders.base module




eoxserver.core.decoders.config module




eoxserver.core.decoders.kvp module




eoxserver.core.decoders.xml module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.core.util package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.core.util package


Submodules




eoxserver.core.util.functools module




eoxserver.core.util.geotools module




eoxserver.core.util.importtools module




eoxserver.core.util.iteratortools module




eoxserver.core.util.multiparttools module




eoxserver.core.util.perftools module




eoxserver.core.util.rect module




eoxserver.core.util.timetools module




eoxserver.core.util.xmltools module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.processing package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.processing package


Subpackages



	eoxserver.processing.gdal package
	Submodules

	eoxserver.processing.gdal.reftools module

	eoxserver.processing.gdal.vrt module

	Module contents





	eoxserver.processing.preprocessing package
	Submodules

	eoxserver.processing.preprocessing.exceptions module

	eoxserver.processing.preprocessing.format module

	eoxserver.processing.preprocessing.georeference module

	eoxserver.processing.preprocessing.optimization module

	eoxserver.processing.preprocessing.util module

	Module contents












Submodules




Module contents







          

      

      

    

  

  
    
    
    eoxserver.processing.gdal package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.processing.gdal package


Submodules




eoxserver.processing.gdal.reftools module




eoxserver.processing.gdal.vrt module


	
eoxserver.processing.gdal.vrt.create_simple_vrt(ds, vrt_filename)

	






Module contents







          

      

      

    

  

  
    
    
    eoxserver.processing.preprocessing package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.processing.preprocessing package


Submodules




eoxserver.processing.preprocessing.exceptions module




eoxserver.processing.preprocessing.format module




eoxserver.processing.preprocessing.georeference module




eoxserver.processing.preprocessing.optimization module




eoxserver.processing.preprocessing.util module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.resources package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.resources package


Subpackages



	eoxserver.resources.coverages package
	Subpackages
	eoxserver.resources.coverages.metadata package
	Subpackages
	eoxserver.resources.coverages.metadata.formats package
	Submodules

	eoxserver.resources.coverages.metadata.formats.dimap_general module

	eoxserver.resources.coverages.metadata.formats.eoom module

	eoxserver.resources.coverages.metadata.formats.gdal_dataset module

	eoxserver.resources.coverages.metadata.formats.gdal_dataset_envisat module

	eoxserver.resources.coverages.metadata.formats.inspire module

	eoxserver.resources.coverages.metadata.formats.native module

	Module contents









	Submodules

	eoxserver.resources.coverages.metadata.component module

	eoxserver.resources.coverages.metadata.interfaces module

	Module contents









	Submodules

	eoxserver.resources.coverages.crss module

	eoxserver.resources.coverages.dateline module

	eoxserver.resources.coverages.formats module

	eoxserver.resources.coverages.models module

	eoxserver.resources.coverages.rangetype module

	eoxserver.resources.coverages.util module

	Module contents





	eoxserver.resources.processes package
	Submodules

	eoxserver.resources.processes.admin module

	eoxserver.resources.processes.models module

	eoxserver.resources.processes.tracker module

	eoxserver.resources.processes.views module

	Module contents












Module contents







          

      

      

    

  

  
    
    
    eoxserver.resources.coverages package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.resources.coverages package


Subpackages



	eoxserver.resources.coverages.metadata package
	Subpackages
	eoxserver.resources.coverages.metadata.formats package
	Submodules

	eoxserver.resources.coverages.metadata.formats.dimap_general module

	eoxserver.resources.coverages.metadata.formats.eoom module

	eoxserver.resources.coverages.metadata.formats.gdal_dataset module

	eoxserver.resources.coverages.metadata.formats.gdal_dataset_envisat module

	eoxserver.resources.coverages.metadata.formats.inspire module

	eoxserver.resources.coverages.metadata.formats.native module

	Module contents









	Submodules

	eoxserver.resources.coverages.metadata.component module

	eoxserver.resources.coverages.metadata.interfaces module

	Module contents












Submodules




eoxserver.resources.coverages.crss module




eoxserver.resources.coverages.dateline module




eoxserver.resources.coverages.formats module




eoxserver.resources.coverages.models module




eoxserver.resources.coverages.rangetype module




eoxserver.resources.coverages.util module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.resources.coverages.metadata package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.resources.coverages.metadata package


Subpackages



	eoxserver.resources.coverages.metadata.formats package
	Submodules

	eoxserver.resources.coverages.metadata.formats.dimap_general module

	eoxserver.resources.coverages.metadata.formats.eoom module

	eoxserver.resources.coverages.metadata.formats.gdal_dataset module

	eoxserver.resources.coverages.metadata.formats.gdal_dataset_envisat module

	eoxserver.resources.coverages.metadata.formats.inspire module

	eoxserver.resources.coverages.metadata.formats.native module

	Module contents












Submodules




eoxserver.resources.coverages.metadata.component module




eoxserver.resources.coverages.metadata.interfaces module


	
class eoxserver.resources.coverages.metadata.interfaces.GDALDatasetMetadataReaderInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for GDAL dataset metadata readers.


	
format(obj)

	Returns a format specifier for the given object. Can be ignored, 
when the reader only supports one format.






	
read_ds(ds)

	Returns a dict with any of the following keys:
- identifier (string)
- extent (a four tuple of floats)
- size (a two-tuple of ints)
- projection (an integer or two-tuple of two strings (definition and format))
- footprint (a django.contrib.gis.geos.MultiPolygon)
- begin_time (a python datetime.datetime)
- end_time (a python datetime.datetime)

The argument ds is a gdal.Dataset.






	
test_ds(obj)

	Return a boolean value, whether or not metadata can be extracted 
from the given object.










	
class eoxserver.resources.coverages.metadata.interfaces.MetadataReaderInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for metadata readers.


	
format(obj)

	Returns a format specifier for the given object. Can be ignored, 
when the reader only supports one format.






	
read(obj)

	Returns a dict with any of the following keys:
- identifier (string)
- extent (a four tuple of floats)
- size (a two-tuple of ints)
- projection (an integer or two-tuple of two strings (definition and format))
- footprint (a django.contrib.gis.geos.MultiPolygon)
- begin_time (a python datetime.datetime)
- end_time (a python datetime.datetime)

The argument obj is of an arbitrary type, the reader needs to 
determine whether or not the type is supported and an exception 
shall be raised if not.






	
test(obj)

	Return a boolean value, whether or not metadata can be extracted 
from the given object.










	
class eoxserver.resources.coverages.metadata.interfaces.MetadataWriterInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for metadata writers.


	
formats

	




	
write(values, file_obj, format=None)

	Write the given values (a dict) to the file-like object file_obj.
The dict contains all of the following entries:
- identifier (string)
- extent (a four tuple of floats)
- size (a two-tuple of ints)
- projection (an integer or two-tuple of two strings (definition and format))
- footprint (a django.contrib.gis.geos.MultiPolygon)
- begin_time (a python datetime.datetime)
- end_time (a python datetime.datetime)

The writer may ignore non-applicable parameters.












Module contents







          

      

      

    

  

  
    
    
    eoxserver.resources.processes package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.resources.processes package


Submodules




eoxserver.resources.processes.admin module




eoxserver.resources.processes.models module




eoxserver.resources.processes.tracker module




eoxserver.resources.processes.views module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services package


Subpackages



	eoxserver.services.auth package
	Submodules

	eoxserver.services.auth.base module

	eoxserver.services.auth.charonpdp module

	eoxserver.services.auth.dummypdp module

	eoxserver.services.auth.exceptions module

	eoxserver.services.auth.interfaces module

	eoxserver.services.auth.middleware module

	Module contents





	eoxserver.services.gdal package
	Subpackages
	eoxserver.services.gdal.wcs package
	Submodules

	eoxserver.services.gdal.wcs.referenceable_dataset_renderer module

	Module contents









	Module contents





	eoxserver.services.gml package
	Subpackages
	eoxserver.services.gml.v32 package
	Submodules

	eoxserver.services.gml.v32.encoders module

	Module contents









	Module contents





	eoxserver.services.mapserver package
	Subpackages
	eoxserver.services.mapserver.connectors package
	Submodules

	eoxserver.services.mapserver.connectors.multifile_connector module

	eoxserver.services.mapserver.connectors.polygonmask_connector module

	eoxserver.services.mapserver.connectors.simple_connector module

	eoxserver.services.mapserver.connectors.tileindex_connector module

	Module contents





	eoxserver.services.mapserver.wcs package
	Submodules

	eoxserver.services.mapserver.wcs.base_renderer module

	eoxserver.services.mapserver.wcs.capabilities_renderer module

	eoxserver.services.mapserver.wcs.coverage_description_renderer module

	eoxserver.services.mapserver.wcs.coverage_renderer module

	Module contents





	eoxserver.services.mapserver.wms package
	Subpackages
	eoxserver.services.mapserver.wms.layerfactories package
	Submodules

	eoxserver.services.mapserver.wms.layerfactories.base module

	eoxserver.services.mapserver.wms.layerfactories.colorized_mask_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_bands_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_mask_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_masked_outlines_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_outlines_layer_factory module

	Module contents





	eoxserver.services.mapserver.wms.styleapplicators package
	Submodules

	eoxserver.services.mapserver.wms.styleapplicators.sld module

	Module contents









	Submodules

	eoxserver.services.mapserver.wms.capabilities_renderer module

	eoxserver.services.mapserver.wms.feature_info_renderer module

	eoxserver.services.mapserver.wms.legendgraphic_renderer module

	eoxserver.services.mapserver.wms.map_renderer module

	eoxserver.services.mapserver.wms.util module

	Module contents









	Submodules

	eoxserver.services.mapserver.interfaces module

	Module contents





	eoxserver.services.native package
	Subpackages
	eoxserver.services.native.wcs package
	Submodules

	eoxserver.services.native.wcs.capabilities_renderer module

	eoxserver.services.native.wcs.coverage_description_renderer module

	Module contents









	Module contents





	eoxserver.services.ows package
	Subpackages
	eoxserver.services.ows.common package
	Subpackages
	eoxserver.services.ows.common.v11 package
	Submodules

	eoxserver.services.ows.common.v11.encoders module

	Module contents





	eoxserver.services.ows.common.v20 package
	Submodules

	eoxserver.services.ows.common.v20.encoders module

	eoxserver.services.ows.common.v20.exceptionhandler module

	Module contents









	Submodules

	eoxserver.services.ows.common.config module

	Module contents





	eoxserver.services.ows.wcs package
	Subpackages
	eoxserver.services.ows.wcs.v10 package
	Submodules

	eoxserver.services.ows.wcs.v10.describecoverage module

	eoxserver.services.ows.wcs.v10.exceptionhandler module

	eoxserver.services.ows.wcs.v10.getcapabilities module

	eoxserver.services.ows.wcs.v10.getcoverage module

	eoxserver.services.ows.wcs.v10.parameters module

	eoxserver.services.ows.wcs.v10.util module

	Module contents





	eoxserver.services.ows.wcs.v11 package
	Submodules

	eoxserver.services.ows.wcs.v11.describecoverage module

	eoxserver.services.ows.wcs.v11.exceptionhandler module

	eoxserver.services.ows.wcs.v11.getcapabilities module

	eoxserver.services.ows.wcs.v11.getcoverage module

	eoxserver.services.ows.wcs.v11.parameters module

	eoxserver.services.ows.wcs.v11.util module

	Module contents





	eoxserver.services.ows.wcs.v20 package
	Subpackages
	eoxserver.services.ows.wcs.v20.encodings package
	Submodules

	eoxserver.services.ows.wcs.v20.encodings.geotiff module

	Module contents





	eoxserver.services.ows.wcs.v20.packages package
	Submodules

	eoxserver.services.ows.wcs.v20.packages.tar module

	eoxserver.services.ows.wcs.v20.packages.zip module

	Module contents









	Submodules

	eoxserver.services.ows.wcs.v20.describecoverage module

	eoxserver.services.ows.wcs.v20.describeeocoverageset module

	eoxserver.services.ows.wcs.v20.encoders module

	eoxserver.services.ows.wcs.v20.exceptionhandler module

	eoxserver.services.ows.wcs.v20.getcapabilities module

	eoxserver.services.ows.wcs.v20.getcoverage module

	eoxserver.services.ows.wcs.v20.geteocoverageset module

	eoxserver.services.ows.wcs.v20.parameters module

	eoxserver.services.ows.wcs.v20.util module

	Module contents









	Submodules

	eoxserver.services.ows.wcs.basehandlers module

	eoxserver.services.ows.wcs.interfaces module

	eoxserver.services.ows.wcs.parameters module

	Module contents





	eoxserver.services.ows.wms package
	Subpackages
	eoxserver.services.ows.wms.v10 package
	Submodules

	eoxserver.services.ows.wms.v10.getcapabilities module

	eoxserver.services.ows.wms.v10.getfeatureinfo module

	eoxserver.services.ows.wms.v10.getmap module

	Module contents





	eoxserver.services.ows.wms.v11 package
	Submodules

	eoxserver.services.ows.wms.v11.getcapabilities module

	eoxserver.services.ows.wms.v11.getfeatureinfo module

	eoxserver.services.ows.wms.v11.getmap module

	Module contents





	eoxserver.services.ows.wms.v13 package
	Submodules

	eoxserver.services.ows.wms.v13.exceptionhandler module

	eoxserver.services.ows.wms.v13.getcapabilities module

	eoxserver.services.ows.wms.v13.getfeatureinfo module

	eoxserver.services.ows.wms.v13.getlegendgraphic module

	eoxserver.services.ows.wms.v13.getmap module

	Module contents









	Submodules

	eoxserver.services.ows.wms.basehandlers module

	eoxserver.services.ows.wms.exceptions module

	eoxserver.services.ows.wms.interfaces module

	eoxserver.services.ows.wms.util module

	Module contents





	eoxserver.services.ows.wps package
	Subpackages
	eoxserver.services.ows.wps.parameters package
	Submodules

	eoxserver.services.ows.wps.parameters.allowed_values module

	eoxserver.services.ows.wps.parameters.base module

	eoxserver.services.ows.wps.parameters.bboxdata module

	eoxserver.services.ows.wps.parameters.codecs module

	eoxserver.services.ows.wps.parameters.complexdata module

	eoxserver.services.ows.wps.parameters.crs module

	eoxserver.services.ows.wps.parameters.data_types module

	eoxserver.services.ows.wps.parameters.formats module

	eoxserver.services.ows.wps.parameters.inputs module

	eoxserver.services.ows.wps.parameters.literaldata module

	eoxserver.services.ows.wps.parameters.response_form module

	eoxserver.services.ows.wps.parameters.units module

	Module contents





	eoxserver.services.ows.wps.processes package
	Submodules

	eoxserver.services.ows.wps.processes.get_time_data module

	Module contents





	eoxserver.services.ows.wps.v10 package
	Subpackages
	eoxserver.services.ows.wps.v10.encoders package
	Submodules

	eoxserver.services.ows.wps.v10.encoders.base module

	eoxserver.services.ows.wps.v10.encoders.capabilities module

	eoxserver.services.ows.wps.v10.encoders.execute_response module

	eoxserver.services.ows.wps.v10.encoders.execute_response_raw module

	eoxserver.services.ows.wps.v10.encoders.parameters module

	eoxserver.services.ows.wps.v10.encoders.process_description module

	Module contents









	Submodules

	eoxserver.services.ows.wps.v10.describeprocess module

	eoxserver.services.ows.wps.v10.exceptionhandler module

	eoxserver.services.ows.wps.v10.execute module

	eoxserver.services.ows.wps.v10.execute_decoder_kvp module

	eoxserver.services.ows.wps.v10.execute_decoder_xml module

	eoxserver.services.ows.wps.v10.getcapabilities module

	eoxserver.services.ows.wps.v10.util module

	Module contents









	Submodules

	eoxserver.services.ows.wps.exceptions module

	eoxserver.services.ows.wps.interfaces module

	eoxserver.services.ows.wps.test_allowed_values module

	eoxserver.services.ows.wps.test_data_types module

	Module contents









	Submodules

	eoxserver.services.ows.component module

	eoxserver.services.ows.decoders module

	eoxserver.services.ows.interfaces module

	eoxserver.services.ows.version module

	Module contents












Submodules




eoxserver.services.exceptions module


	
exception eoxserver.services.exceptions.HTTPMethodNotAllowedError(msg, allowed_methods)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

This exception is raised in case of a HTTP requires with unsupported
HTTP method.
This exception should always lead to the 405 Method not allowed HTTP error.

The constructor takes two arguments, the error message mgs and the list
of the accepted HTTP methods allowed_methods.






	
exception eoxserver.services.exceptions.InterpolationMethodNotSupportedException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

This exception indicates a not supported interpolation method.


	
code = 'InterpolationMethodNotSupported'

	




	
locator = 'interpolation'

	








	
exception eoxserver.services.exceptions.InvalidAxisLabelException(axis_label)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

This exception indicates that an invalid axis name was chosen in a WCS
2.0 subsetting parameter.


	
code = 'InvalidAxisLabel'

	








	
exception eoxserver.services.exceptions.InvalidFieldSequenceException(msg, locator)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Error in RangeSubsetting for illegal intervals.


	
code = 'InvalidFieldSequence'

	








	
exception eoxserver.services.exceptions.InvalidOutputCrsException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

This exception indicates an invalid WCS 2.0 outputCrs parameter was
submitted.


	
code = 'OutputCrs-NotSupported'

	




	
locator = 'outputCrs'

	








	
exception eoxserver.services.exceptions.InvalidRequestException(msg, code=None, locator=None)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

This exception indicates that the request was invalid and an exception
report shall be returned to the client.

The constructor takes three arguments, namely msg, the error message,
code, the error code, and locator, which is needed in OWS
exception reports for indicating which part of the request produced the
error.

How exactly the exception reports are constructed is not defined by the
exception, but by exception handlers.






	
exception eoxserver.services.exceptions.InvalidScaleExtentException(low, high)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Error in ScaleExtent operations


	
code = 'InvalidExtent'

	








	
exception eoxserver.services.exceptions.InvalidScaleFactorException(scalefactor)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Error in ScaleFactor and ScaleAxis operations


	
code = 'InvalidScaleFactor'

	








	
exception eoxserver.services.exceptions.InvalidSubsettingCrsException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

This exception indicates an invalid WCS 2.0 subsettingCrs parameter was
submitted.


	
code = 'SubsettingCrs-NotSupported'

	




	
locator = 'subsettingCrs'

	








	
exception eoxserver.services.exceptions.InvalidSubsettingException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

This exception indicates an invalid WCS 2.0 subsetting parameter was
submitted.


	
code = 'InvalidSubsetting'

	




	
locator = 'subset'

	








	
exception eoxserver.services.exceptions.LocatorListException(items)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Base class for exceptions that report that a number of items are
missing or invalid


	
locator

	This property provides a list of all missing/invalid items.










	
exception eoxserver.services.exceptions.NoSuchCoverageException(items)

	Bases: eoxserver.services.exceptions.LocatorListException

This exception indicates that the requested coverage(s) do not
exist.


	
code = 'NoSuchCoverage'

	








	
exception eoxserver.services.exceptions.NoSuchDatasetSeriesOrCoverageException(items)

	Bases: eoxserver.services.exceptions.LocatorListException

This exception indicates that the requested coverage(s) or dataset
series do not exist.


	
code = 'NoSuchDatasetSeriesOrCoverage'

	








	
exception eoxserver.services.exceptions.NoSuchFieldException(msg, locator)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Error in RangeSubsetting when band does not exist.


	
code = 'NoSuchField'

	








	
exception eoxserver.services.exceptions.OperationNotSupportedException(message, operation=None)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Exception to be thrown when some operations are not supported or
disabled.


	
code = 'OperationNotSupported'

	




	
locator

	








	
exception eoxserver.services.exceptions.RenderException(message, locator, is_parameter=True)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Rendering related exception.


	
code

	








	
exception eoxserver.services.exceptions.ScaleAxisUndefinedException(axis)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Error in all scaling operations involving an axis


	
code = 'ScaleAxisUndefined'

	








	
exception eoxserver.services.exceptions.ServiceNotSupportedException(service)

	Bases: eoxserver.services.exceptions.OperationNotSupportedException

Exception to be thrown when a specific OWS service is not enabled.






	
exception eoxserver.services.exceptions.VersionNegotiationException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

This exception indicates that version negotiation fails. Such errors can
happen with OWS 2.0 compliant “new-style” version negotation.


	
code = 'VersionNegotiationFailed'

	








	
exception eoxserver.services.exceptions.VersionNotSupportedException(service, version)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Exception to be thrown when a specific OWS service version is not
supported.


	
code = 'InvalidParameterValue'

	










eoxserver.services.models module




eoxserver.services.parameters module


	
class eoxserver.services.parameters.CapabilitiesRenderParams(coverages, version, sections=None, accept_languages=None, accept_formats=None, updatesequence=None, request=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]


	
accept_formats

	




	
accept_languages

	




	
coverages

	




	
request

	




	
sections

	




	
updatesequence

	




	
version

	








	
class eoxserver.services.parameters.RenderParameters

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Abstract base class for render parameters






	
class eoxserver.services.parameters.VersionedParams(version)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]


	
version

	










eoxserver.services.result module




eoxserver.services.subset module




eoxserver.services.urls module




eoxserver.services.views module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.auth package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.auth package


Submodules




eoxserver.services.auth.base module




eoxserver.services.auth.charonpdp module




eoxserver.services.auth.dummypdp module




eoxserver.services.auth.exceptions module


	
exception eoxserver.services.auth.exceptions.AuthorisationException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]


	
code = 'AccessForbidden'

	










eoxserver.services.auth.interfaces module


	
class eoxserver.services.auth.interfaces.PolicyDecisionPointInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

This is the interface for Policy Decision Point (PDP) implementations.


	
authorize(request)

	This method takes an OWSRequest object as input and returns an
AuthorizationResponse instance. It is expected to check if
the authenticated user (if any) is authorized to access the requested
resource and set the authorized flag of the response accordingly.

In case the user is not authorized, the content and status of the
response shall be filled with an error message and the appropriate
HTTP Status Code (403).

The method shall not raise any exceptions.






	
pdp_type

	The type name of this PDP.












eoxserver.services.auth.middleware module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.gdal package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.gdal package


Subpackages



	eoxserver.services.gdal.wcs package
	Submodules

	eoxserver.services.gdal.wcs.referenceable_dataset_renderer module

	Module contents












Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.gdal.wcs package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.gdal.wcs package


Submodules




eoxserver.services.gdal.wcs.referenceable_dataset_renderer module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.gml package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.gml package


Subpackages



	eoxserver.services.gml.v32 package
	Submodules

	eoxserver.services.gml.v32.encoders module

	Module contents












Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.gml.v32 package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.gml.v32 package


Submodules




eoxserver.services.gml.v32.encoders module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.mapserver package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.mapserver package


Subpackages



	eoxserver.services.mapserver.connectors package
	Submodules

	eoxserver.services.mapserver.connectors.multifile_connector module

	eoxserver.services.mapserver.connectors.polygonmask_connector module

	eoxserver.services.mapserver.connectors.simple_connector module

	eoxserver.services.mapserver.connectors.tileindex_connector module

	Module contents





	eoxserver.services.mapserver.wcs package
	Submodules

	eoxserver.services.mapserver.wcs.base_renderer module

	eoxserver.services.mapserver.wcs.capabilities_renderer module

	eoxserver.services.mapserver.wcs.coverage_description_renderer module

	eoxserver.services.mapserver.wcs.coverage_renderer module

	Module contents





	eoxserver.services.mapserver.wms package
	Subpackages
	eoxserver.services.mapserver.wms.layerfactories package
	Submodules

	eoxserver.services.mapserver.wms.layerfactories.base module

	eoxserver.services.mapserver.wms.layerfactories.colorized_mask_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_bands_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_mask_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_masked_outlines_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_outlines_layer_factory module

	Module contents





	eoxserver.services.mapserver.wms.styleapplicators package
	Submodules

	eoxserver.services.mapserver.wms.styleapplicators.sld module

	Module contents









	Submodules

	eoxserver.services.mapserver.wms.capabilities_renderer module

	eoxserver.services.mapserver.wms.feature_info_renderer module

	eoxserver.services.mapserver.wms.legendgraphic_renderer module

	eoxserver.services.mapserver.wms.map_renderer module

	eoxserver.services.mapserver.wms.util module

	Module contents












Submodules




eoxserver.services.mapserver.interfaces module


	
class eoxserver.services.mapserver.interfaces.ConnectorInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for connectors between mapscript.layerObj and associated
data.


	
connect(coverage, data_items, layer, options)

	Connect a layer (a mapscript.layerObj) with the given data
items and coverage (a list of two-tuples: location and semantic).






	
disconnect(coverage, data_items, layer, options)

	Performs all necessary cleanup operations.






	
supports(data_items)

	Returns True if the given data_items are supported and
False if not.










	
class eoxserver.services.mapserver.interfaces.LayerFactoryInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for factories that create mapscript.layerObj objects for
coverages.


	
generate(eo_object, group_layer, options)

	Returns an iterable of mapscript.layerObj objects preconfigured
for the given EO object. This is easily done via the yield
statement.






	
generate_group(name)

	Returns a ‘group layer’ to be referenced by all other layers
generated by this factory.






	
requires_connection

	Return whether or layers generated by this factory require to be
connected via a layer connector.






	
suffixes

	The suffixes associated with layers this factory produces. This is
used for “specialized” layers such as “bands” or “outlines” layers.
For factories that don’t use this feature, it can be left out.










	
class eoxserver.services.mapserver.interfaces.StyleApplicatorInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for style applicators.


	
apply(coverage, data_items, layer)

	Apply all relevant styles.












Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.mapserver.connectors package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.mapserver.connectors package


Submodules




eoxserver.services.mapserver.connectors.multifile_connector module




eoxserver.services.mapserver.connectors.polygonmask_connector module




eoxserver.services.mapserver.connectors.simple_connector module




eoxserver.services.mapserver.connectors.tileindex_connector module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.mapserver.wcs package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.mapserver.wcs package


Submodules




eoxserver.services.mapserver.wcs.base_renderer module




eoxserver.services.mapserver.wcs.capabilities_renderer module




eoxserver.services.mapserver.wcs.coverage_description_renderer module




eoxserver.services.mapserver.wcs.coverage_renderer module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.mapserver.wms package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.mapserver.wms package


Subpackages



	eoxserver.services.mapserver.wms.layerfactories package
	Submodules

	eoxserver.services.mapserver.wms.layerfactories.base module

	eoxserver.services.mapserver.wms.layerfactories.colorized_mask_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_bands_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_mask_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_masked_outlines_layer_factory module

	eoxserver.services.mapserver.wms.layerfactories.coverage_outlines_layer_factory module

	Module contents





	eoxserver.services.mapserver.wms.styleapplicators package
	Submodules

	eoxserver.services.mapserver.wms.styleapplicators.sld module

	Module contents












Submodules




eoxserver.services.mapserver.wms.capabilities_renderer module




eoxserver.services.mapserver.wms.feature_info_renderer module




eoxserver.services.mapserver.wms.legendgraphic_renderer module




eoxserver.services.mapserver.wms.map_renderer module




eoxserver.services.mapserver.wms.util module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.native package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.native package


Subpackages



	eoxserver.services.native.wcs package
	Submodules

	eoxserver.services.native.wcs.capabilities_renderer module

	eoxserver.services.native.wcs.coverage_description_renderer module

	Module contents












Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.native.wcs package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.native.wcs package


Submodules




eoxserver.services.native.wcs.capabilities_renderer module




eoxserver.services.native.wcs.coverage_description_renderer module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.ows package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.ows package


Subpackages



	eoxserver.services.ows.common package
	Subpackages
	eoxserver.services.ows.common.v11 package
	Submodules

	eoxserver.services.ows.common.v11.encoders module

	Module contents





	eoxserver.services.ows.common.v20 package
	Submodules

	eoxserver.services.ows.common.v20.encoders module

	eoxserver.services.ows.common.v20.exceptionhandler module

	Module contents









	Submodules

	eoxserver.services.ows.common.config module

	Module contents





	eoxserver.services.ows.wcs package
	Subpackages
	eoxserver.services.ows.wcs.v10 package
	Submodules

	eoxserver.services.ows.wcs.v10.describecoverage module

	eoxserver.services.ows.wcs.v10.exceptionhandler module

	eoxserver.services.ows.wcs.v10.getcapabilities module

	eoxserver.services.ows.wcs.v10.getcoverage module

	eoxserver.services.ows.wcs.v10.parameters module

	eoxserver.services.ows.wcs.v10.util module

	Module contents





	eoxserver.services.ows.wcs.v11 package
	Submodules

	eoxserver.services.ows.wcs.v11.describecoverage module

	eoxserver.services.ows.wcs.v11.exceptionhandler module

	eoxserver.services.ows.wcs.v11.getcapabilities module

	eoxserver.services.ows.wcs.v11.getcoverage module

	eoxserver.services.ows.wcs.v11.parameters module

	eoxserver.services.ows.wcs.v11.util module

	Module contents





	eoxserver.services.ows.wcs.v20 package
	Subpackages
	eoxserver.services.ows.wcs.v20.encodings package
	Submodules

	eoxserver.services.ows.wcs.v20.encodings.geotiff module

	Module contents





	eoxserver.services.ows.wcs.v20.packages package
	Submodules

	eoxserver.services.ows.wcs.v20.packages.tar module

	eoxserver.services.ows.wcs.v20.packages.zip module

	Module contents









	Submodules

	eoxserver.services.ows.wcs.v20.describecoverage module

	eoxserver.services.ows.wcs.v20.describeeocoverageset module

	eoxserver.services.ows.wcs.v20.encoders module

	eoxserver.services.ows.wcs.v20.exceptionhandler module

	eoxserver.services.ows.wcs.v20.getcapabilities module

	eoxserver.services.ows.wcs.v20.getcoverage module

	eoxserver.services.ows.wcs.v20.geteocoverageset module

	eoxserver.services.ows.wcs.v20.parameters module

	eoxserver.services.ows.wcs.v20.util module

	Module contents









	Submodules

	eoxserver.services.ows.wcs.basehandlers module

	eoxserver.services.ows.wcs.interfaces module

	eoxserver.services.ows.wcs.parameters module

	Module contents





	eoxserver.services.ows.wms package
	Subpackages
	eoxserver.services.ows.wms.v10 package
	Submodules

	eoxserver.services.ows.wms.v10.getcapabilities module

	eoxserver.services.ows.wms.v10.getfeatureinfo module

	eoxserver.services.ows.wms.v10.getmap module

	Module contents





	eoxserver.services.ows.wms.v11 package
	Submodules

	eoxserver.services.ows.wms.v11.getcapabilities module

	eoxserver.services.ows.wms.v11.getfeatureinfo module

	eoxserver.services.ows.wms.v11.getmap module

	Module contents





	eoxserver.services.ows.wms.v13 package
	Submodules

	eoxserver.services.ows.wms.v13.exceptionhandler module

	eoxserver.services.ows.wms.v13.getcapabilities module

	eoxserver.services.ows.wms.v13.getfeatureinfo module

	eoxserver.services.ows.wms.v13.getlegendgraphic module

	eoxserver.services.ows.wms.v13.getmap module

	Module contents









	Submodules

	eoxserver.services.ows.wms.basehandlers module

	eoxserver.services.ows.wms.exceptions module

	eoxserver.services.ows.wms.interfaces module

	eoxserver.services.ows.wms.util module

	Module contents





	eoxserver.services.ows.wps package
	Subpackages
	eoxserver.services.ows.wps.parameters package
	Submodules

	eoxserver.services.ows.wps.parameters.allowed_values module

	eoxserver.services.ows.wps.parameters.base module

	eoxserver.services.ows.wps.parameters.bboxdata module

	eoxserver.services.ows.wps.parameters.codecs module

	eoxserver.services.ows.wps.parameters.complexdata module

	eoxserver.services.ows.wps.parameters.crs module

	eoxserver.services.ows.wps.parameters.data_types module

	eoxserver.services.ows.wps.parameters.formats module

	eoxserver.services.ows.wps.parameters.inputs module

	eoxserver.services.ows.wps.parameters.literaldata module

	eoxserver.services.ows.wps.parameters.response_form module

	eoxserver.services.ows.wps.parameters.units module

	Module contents





	eoxserver.services.ows.wps.processes package
	Submodules

	eoxserver.services.ows.wps.processes.get_time_data module

	Module contents





	eoxserver.services.ows.wps.v10 package
	Subpackages
	eoxserver.services.ows.wps.v10.encoders package
	Submodules

	eoxserver.services.ows.wps.v10.encoders.base module

	eoxserver.services.ows.wps.v10.encoders.capabilities module

	eoxserver.services.ows.wps.v10.encoders.execute_response module

	eoxserver.services.ows.wps.v10.encoders.execute_response_raw module

	eoxserver.services.ows.wps.v10.encoders.parameters module

	eoxserver.services.ows.wps.v10.encoders.process_description module

	Module contents









	Submodules

	eoxserver.services.ows.wps.v10.describeprocess module

	eoxserver.services.ows.wps.v10.exceptionhandler module

	eoxserver.services.ows.wps.v10.execute module

	eoxserver.services.ows.wps.v10.execute_decoder_kvp module

	eoxserver.services.ows.wps.v10.execute_decoder_xml module

	eoxserver.services.ows.wps.v10.getcapabilities module

	eoxserver.services.ows.wps.v10.util module

	Module contents









	Submodules

	eoxserver.services.ows.wps.exceptions module

	eoxserver.services.ows.wps.interfaces module

	eoxserver.services.ows.wps.test_allowed_values module

	eoxserver.services.ows.wps.test_data_types module

	Module contents












Submodules




eoxserver.services.ows.component module




eoxserver.services.ows.decoders module




eoxserver.services.ows.interfaces module


	
class eoxserver.services.ows.interfaces.ExceptionHandlerInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for OWS exception handlers.


	
handle_exception(request, exception)

	The main exception handling method. Parameters are an object of the 
django.http.Request type and the raised exception.






	
request

	The supported request method.






	
service

	The name of the supported service in uppercase letters. This can 
also be an iterable, if the handler shall support more than one 
service specifier.
Some service specifications demand that the service parameter can be
omitted for certain requests. In this case this property can alse be
None or contain None.






	
versions

	An iterable of all supported versions as strings.










	
class eoxserver.services.ows.interfaces.GetServiceHandlerInterface

	Bases: eoxserver.services.ows.interfaces.ServiceHandlerInterface

Interface for service handlers that support HTTP GET requests.






	
class eoxserver.services.ows.interfaces.PostServiceHandlerInterface

	Bases: eoxserver.services.ows.interfaces.ServiceHandlerInterface

Interface for service handlers that support HTTP POST requests.






	
class eoxserver.services.ows.interfaces.ServiceHandlerInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for OWS Service handlers.


	
constraints

	Optional property to return a dict with constraints for default 
values.






	
handle(request)

	The main handling method. Takes a django.http.Request object as 
single parameter.






	
index

	Optional. The index this service handler shall have when being 
reported in a capabilities document.






	
request

	The supported request method.






	
service

	The name of the supported service in uppercase letters. This can 
also be an iterable, if the handler shall support more than one 
service specifier.
Some service specifications demand that the service parameter can be
omitted for certain requests. In this case this property can alse be
None or contain None.






	
versions

	An iterable of all supported versions as strings.










	
class eoxserver.services.ows.interfaces.VersionNegotiationInterface

	Bases: eoxserver.services.ows.interfaces.ServiceHandlerInterface

Interface for handlers that contribute to version negotiation.








eoxserver.services.ows.version module


	
eoxserver.services.ows.version.parse_version_string(version_string)

	Convenience function to parse a version from a string.






	
class eoxserver.services.ows.version.Version(major, minor, revision=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Abstraction for OWS versions. Must be in the form ‘x.y(.z)’, where all
components must be positive integers or zero. The last component may be
unspecified (None).

Versions can be compared with other versions. Strings and tuples of the
correct layout are also compareable.

Versions are compared by the “major” and the “minor” number. Only if
both versions provide a “revision” it is taken into account. So Versions
“1.0” and “1.0.1” are considered equal!


	
major

	




	
minor

	




	
revision

	










Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.ows.common package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.ows.common package


Subpackages



	eoxserver.services.ows.common.v11 package
	Submodules

	eoxserver.services.ows.common.v11.encoders module

	Module contents





	eoxserver.services.ows.common.v20 package
	Submodules

	eoxserver.services.ows.common.v20.encoders module

	eoxserver.services.ows.common.v20.exceptionhandler module

	Module contents












Submodules




eoxserver.services.ows.common.config module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.ows.wcs package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.ows.wcs package


Subpackages



	eoxserver.services.ows.wcs.v10 package
	Submodules

	eoxserver.services.ows.wcs.v10.describecoverage module

	eoxserver.services.ows.wcs.v10.exceptionhandler module

	eoxserver.services.ows.wcs.v10.getcapabilities module

	eoxserver.services.ows.wcs.v10.getcoverage module

	eoxserver.services.ows.wcs.v10.parameters module

	eoxserver.services.ows.wcs.v10.util module

	Module contents





	eoxserver.services.ows.wcs.v11 package
	Submodules

	eoxserver.services.ows.wcs.v11.describecoverage module

	eoxserver.services.ows.wcs.v11.exceptionhandler module

	eoxserver.services.ows.wcs.v11.getcapabilities module

	eoxserver.services.ows.wcs.v11.getcoverage module

	eoxserver.services.ows.wcs.v11.parameters module

	eoxserver.services.ows.wcs.v11.util module

	Module contents





	eoxserver.services.ows.wcs.v20 package
	Subpackages
	eoxserver.services.ows.wcs.v20.encodings package
	Submodules

	eoxserver.services.ows.wcs.v20.encodings.geotiff module

	Module contents





	eoxserver.services.ows.wcs.v20.packages package
	Submodules

	eoxserver.services.ows.wcs.v20.packages.tar module

	eoxserver.services.ows.wcs.v20.packages.zip module

	Module contents









	Submodules

	eoxserver.services.ows.wcs.v20.describecoverage module

	eoxserver.services.ows.wcs.v20.describeeocoverageset module

	eoxserver.services.ows.wcs.v20.encoders module

	eoxserver.services.ows.wcs.v20.exceptionhandler module

	eoxserver.services.ows.wcs.v20.getcapabilities module

	eoxserver.services.ows.wcs.v20.getcoverage module

	eoxserver.services.ows.wcs.v20.geteocoverageset module

	eoxserver.services.ows.wcs.v20.parameters module

	eoxserver.services.ows.wcs.v20.util module

	Module contents












Submodules




eoxserver.services.ows.wcs.basehandlers module




eoxserver.services.ows.wcs.interfaces module


	
class eoxserver.services.ows.wcs.interfaces.EncodingExtensionInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]


	
parse_encoding_params(request)

	Return a dict, containing all additional encoding parameters from a 
given request.






	
supports(format, options)

	Return a boolen value, whether or not an encoding extension 
supports a given format.










	
class eoxserver.services.ows.wcs.interfaces.PackageWriterInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for package writers.


	
add_to_package(package, file_obj, size, location)

	Add the file object to the package, that is returned by the 
create_package method.






	
cleanup(package)

	Perform any necessary cleanups, like closing files, etc.






	
create_package(filename, format, params)

	Create a package, which the encoder can later add items to with the 
cleanup and add_to_package method.






	
get_file_extension(package, format, params)

	Retrieve the file extension for the given package and format 
specifier.






	
get_mime_type(package, format, params)

	Retrieve the output mime type for the given package and/or format
specifier.






	
supports(format, params)

	Return a boolen value, whether or not a writer supports a given 
format.










	
class eoxserver.services.ows.wcs.interfaces.WCSCapabilitiesRendererInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for WCS Capabilities renderers.


	
render(params)

	Render the capabilities including information about the given 
coverages.






	
supports(params)

	Returns a boolean value to indicate whether or not the renderer is 
able to render the capabilities with the given parameters.










	
class eoxserver.services.ows.wcs.interfaces.WCSCoverageDescriptionRendererInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for coverage description renderers.


	
render(params)

	Render the description of the given coverages.






	
supports(params)

	Returns a boolean value to indicate whether or not the renderer is 
able to render the coverage and the given WCS version.










	
class eoxserver.services.ows.wcs.interfaces.WCSCoverageRendererInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for coverage renderers.


	
render(params)

	Render the coverage with the given parameters.






	
supports(params)

	Returns a boolean value to indicate whether or not the renderer is 
able to render the coverage with the given parameters.












eoxserver.services.ows.wcs.parameters module


	
class eoxserver.services.ows.wcs.parameters.CoverageDescriptionRenderParams(coverages, version)

	Bases: eoxserver.services.ows.wcs.parameters.WCSParamsMixIn, eoxserver.services.parameters.VersionedParams


	
coverage_ids

	




	
coverage_ids_key_name = None

	




	
coverages

	








	
class eoxserver.services.ows.wcs.parameters.CoverageRenderParams(coverage, version)

	Bases: eoxserver.services.ows.wcs.parameters.WCSParamsMixIn, eoxserver.services.parameters.VersionedParams


	
coverage

	




	
coverage_id

	




	
coverage_id_key_name = None

	








	
class eoxserver.services.ows.wcs.parameters.WCSCapabilitiesRenderParams(coverages, version, sections=None, accept_languages=None, accept_formats=None, updatesequence=None, request=None)

	Bases: eoxserver.services.ows.wcs.parameters.WCSParamsMixIn, eoxserver.services.parameters.CapabilitiesRenderParams






	
class eoxserver.services.ows.wcs.parameters.WCSParamsMixIn

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]








Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.ows.wms package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.ows.wms package


Subpackages



	eoxserver.services.ows.wms.v10 package
	Submodules

	eoxserver.services.ows.wms.v10.getcapabilities module

	eoxserver.services.ows.wms.v10.getfeatureinfo module

	eoxserver.services.ows.wms.v10.getmap module

	Module contents





	eoxserver.services.ows.wms.v11 package
	Submodules

	eoxserver.services.ows.wms.v11.getcapabilities module

	eoxserver.services.ows.wms.v11.getfeatureinfo module

	eoxserver.services.ows.wms.v11.getmap module

	Module contents





	eoxserver.services.ows.wms.v13 package
	Submodules

	eoxserver.services.ows.wms.v13.exceptionhandler module

	eoxserver.services.ows.wms.v13.getcapabilities module

	eoxserver.services.ows.wms.v13.getfeatureinfo module

	eoxserver.services.ows.wms.v13.getlegendgraphic module

	eoxserver.services.ows.wms.v13.getmap module

	Module contents












Submodules




eoxserver.services.ows.wms.basehandlers module




eoxserver.services.ows.wms.exceptions module


	
exception eoxserver.services.ows.wms.exceptions.InvalidCRS(value, crs_param_name)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]


	
code = 'InvalidCRS'

	








	
exception eoxserver.services.ows.wms.exceptions.InvalidFormat(value)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]


	
code = 'InvalidFormat'

	




	
locator = 'format'

	








	
exception eoxserver.services.ows.wms.exceptions.LayerNotDefined(layer)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]


	
code = 'LayerNotDefined'

	




	
locator = 'layers'

	










eoxserver.services.ows.wms.interfaces module


	
class eoxserver.services.ows.wms.interfaces.WMSCapabilitiesRendererInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for WMS compatible capabilities renderers.


	
render(collections, coverages, request_values)

	Render a capabilities document, containing metadata of the given 
collections and coverages.










	
class eoxserver.services.ows.wms.interfaces.WMSFeatureInfoRendererInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for WMS compatible feature info renderers.


	
render(layer_groups, request_values, **options)

	Render the given layer hierarchy with the provided request values 
and further options.

options contains relevant options such as specified bands.






	
suffixes

	Return a list of supported layer suffixes for this renderer.










	
class eoxserver.services.ows.wms.interfaces.WMSLegendGraphicRendererInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for WMS compatible legend graphic renderers.


	
render(collection, eo_object, request_values, **options)

	Render the given collection and coverage with the provided request
values and further options.

options contains relevant options such as specified bands.






	
suffixes

	Return a list of supported layer suffixes for this renderer.










	
class eoxserver.services.ows.wms.interfaces.WMSMapRendererInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface for WMS compatible map renderers.


	
render(layer_groups, request_values, **options)

	Render the given layer hierarchy with the provided request values 
and further options.

options contains relevant options such as specified bands.






	
suffixes

	Return a list of supported layer suffixes for this renderer.












eoxserver.services.ows.wms.util module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.ows.wps package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.ows.wps package


Subpackages



	eoxserver.services.ows.wps.parameters package
	Submodules

	eoxserver.services.ows.wps.parameters.allowed_values module

	eoxserver.services.ows.wps.parameters.base module

	eoxserver.services.ows.wps.parameters.bboxdata module

	eoxserver.services.ows.wps.parameters.codecs module

	eoxserver.services.ows.wps.parameters.complexdata module

	eoxserver.services.ows.wps.parameters.crs module

	eoxserver.services.ows.wps.parameters.data_types module

	eoxserver.services.ows.wps.parameters.formats module

	eoxserver.services.ows.wps.parameters.inputs module

	eoxserver.services.ows.wps.parameters.literaldata module

	eoxserver.services.ows.wps.parameters.response_form module

	eoxserver.services.ows.wps.parameters.units module

	Module contents





	eoxserver.services.ows.wps.processes package
	Submodules

	eoxserver.services.ows.wps.processes.get_time_data module

	Module contents





	eoxserver.services.ows.wps.v10 package
	Subpackages
	eoxserver.services.ows.wps.v10.encoders package
	Submodules

	eoxserver.services.ows.wps.v10.encoders.base module

	eoxserver.services.ows.wps.v10.encoders.capabilities module

	eoxserver.services.ows.wps.v10.encoders.execute_response module

	eoxserver.services.ows.wps.v10.encoders.execute_response_raw module

	eoxserver.services.ows.wps.v10.encoders.parameters module

	eoxserver.services.ows.wps.v10.encoders.process_description module

	Module contents









	Submodules

	eoxserver.services.ows.wps.v10.describeprocess module

	eoxserver.services.ows.wps.v10.exceptionhandler module

	eoxserver.services.ows.wps.v10.execute module

	eoxserver.services.ows.wps.v10.execute_decoder_kvp module

	eoxserver.services.ows.wps.v10.execute_decoder_xml module

	eoxserver.services.ows.wps.v10.getcapabilities module

	eoxserver.services.ows.wps.v10.util module

	Module contents












Submodules




eoxserver.services.ows.wps.exceptions module


	
exception eoxserver.services.ows.wps.exceptions.ExecuteError(message='', locator='process.execute()')

	Bases: eoxserver.services.ows.wps.exceptions.NoApplicableCode






	
exception eoxserver.services.ows.wps.exceptions.FileSizeExceeded(message, locator)

	Bases: eoxserver.services.ows.wps.exceptions.OWS10Exception






	
exception eoxserver.services.ows.wps.exceptions.InvalidInputError(input_id)

	Bases: eoxserver.services.ows.wps.exceptions.InvalidParameterValue






	
exception eoxserver.services.ows.wps.exceptions.InvalidInputReferenceError(input_id, message='')

	Bases: eoxserver.services.ows.wps.exceptions.InvalidParameterValue






	
exception eoxserver.services.ows.wps.exceptions.InvalidInputValueError(input_id, message='')

	Bases: eoxserver.services.ows.wps.exceptions.InvalidParameterValue






	
exception eoxserver.services.ows.wps.exceptions.InvalidOutputDefError(output_id, message='')

	Bases: eoxserver.services.ows.wps.exceptions.InvalidParameterValue






	
exception eoxserver.services.ows.wps.exceptions.InvalidOutputError(output_id)

	Bases: eoxserver.services.ows.wps.exceptions.InvalidParameterValue






	
exception eoxserver.services.ows.wps.exceptions.InvalidOutputValueError(output_id, message='')

	Bases: eoxserver.services.ows.wps.exceptions.NoApplicableCode






	
exception eoxserver.services.ows.wps.exceptions.InvalidParameterValue(message, locator)

	Bases: eoxserver.services.ows.wps.exceptions.OWS10Exception






	
exception eoxserver.services.ows.wps.exceptions.MissingParameterValue(message, locator)

	Bases: eoxserver.services.ows.wps.exceptions.OWS10Exception






	
exception eoxserver.services.ows.wps.exceptions.MissingRequiredInputError(input_id)

	Bases: eoxserver.services.ows.wps.exceptions.InvalidParameterValue






	
exception eoxserver.services.ows.wps.exceptions.NoApplicableCode(message, locator=None)

	Bases: eoxserver.services.ows.wps.exceptions.OWS10Exception


	
http_status_code = 500

	








	
exception eoxserver.services.ows.wps.exceptions.NoSuchProcessError(identifier)

	Bases: eoxserver.services.ows.wps.exceptions.InvalidParameterValue






	
exception eoxserver.services.ows.wps.exceptions.NotEnoughStorage(message)

	Bases: eoxserver.services.ows.wps.exceptions.OWS10Exception


	
http_status_code = 507

	








	
exception eoxserver.services.ows.wps.exceptions.OWS10Exception(code, locator, message)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Base OWS 1.0 exception of the WPS 1.0.0 exceptions


	
http_status_code = 400

	








	
exception eoxserver.services.ows.wps.exceptions.ServerBusy(message)

	Bases: eoxserver.services.ows.wps.exceptions.OWS10Exception


	
http_status_code = 503

	








	
exception eoxserver.services.ows.wps.exceptions.StorageNotSupported(message)

	Bases: eoxserver.services.ows.wps.exceptions.OWS10Exception






	
exception eoxserver.services.ows.wps.exceptions.VersionNegotiationFailed(message, locator)

	Bases: eoxserver.services.ows.wps.exceptions.OWS10Exception








eoxserver.services.ows.wps.interfaces module


	
class eoxserver.services.ows.wps.interfaces.AsyncBackendInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface class for an asynchronous WPS back-end.
NOTE: Only one asynchronous back-end at time is allowed to be configured.


	
cancel(job_id, **kwargs)

	Cancel the job execution.






	
execute(process, raw_inputs, resp_form, extra_parts=None, job_id=None, version='1.0.0', **kwargs)

	Execute process asynchronously.
The request is defined by the process’s identifier process_id,
raw_inputs (before the decoding and resolution
of the references), and the resp_form (holding
the outputs’ parameters).  The version of the WPS standard
to be used.  Optionally, the user defined job_id can be passed.
If the job_id cannot be used the execute shall fail.

The extra_parts should contain a dictionary of named request parts
should the request contain multi-part/related CID references.

On success, the method returns the job_id assigned to the
executed job.






	
get_response_url(job_id)

	Get URL of the execute response for the given job id






	
get_status(job_id)

	Get status of a job. Allowed responses and their meanings are:
ACCEPTED  - job scheduled for execution
STARTED   - job in progress
PAUSED    - job is stopped and it can be resumed
CANCELLED - job was terminated by the user
FAILED    - job ended with an error
SUCCEEDED - job ended successfully






	
pause(job_id, **kwargs)

	Pause the job execution.






	
purge(job_id, **kwargs)

	Purge the job from the system by removing all the resources
occupied by the job.






	
resume(job_id, **kwargs)

	Resume the job execution.






	
supported_versions

	A list of versions of the WPS standard supported by the back-end.










	
class eoxserver.services.ows.wps.interfaces.ProcessInterface

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Interface class for processes offered, described and executed by
the WPS.


	
asynchronous

	Optional boolean flag indicating whether the process can be executed
asynchronously. If missing False is assumed.






	
description

	A human-readable detailed description of the process. Optional.
(Content of the the abstract in the WPS process description.)






	
execute(**kwargs)

	The main execution function for the process. The kwargs are the
parsed input inputs (using the keys as defined by the inputs)
and the Complex Data format requests (using the keys as defined by
the outputs).
The method is expected to return a dictionary of the output values
(using the keys as defined by the outputs). In case of only
one output item defined by the outputs, one output value
is allowed to be returned directly.






	
identifier

	An identifier (URI) of the process. Optional.
When omitted it defaults to the process’ class-name.






	
inputs

	A dict mapping the inputs’ identifiers to their respective types.
The type can be either one of the supported native python types
(automatically converted to a LiteralData object) or an instance
of one of the data-specification classes (LiteralData,
BoundingBoxData, or ComplexData).  Mandatory.






	
metadata

	A dict of title/URL meta-data pairs associated with the process.
Optional.






	
outputs

	A dict mapping the outputs’ identifiers to their respective types.
The type can be either one of the supported native python types
(automatically converted to a LiteralData object) or an instance
of one of the data-specification classes (LiteralData,
BoundingBoxData, or ComplexData).  Mandatory.






	
profiles

	A iterable of URNs of WPS application profiles this process
adheres to. Optional.






	
retention_period

	This optional property (datetime.timedelta) indicates the minimum
time the process results shall be retained after the completion.
If omitted the default server retention policy is applied.






	
synchronous

	Optional boolean flag indicating whether the process can be executed
synchronously. If missing True is assumed.






	
title

	A human-readable title of the process. Optional. When omitted it
defaults to the process identifier.






	
version

	The version of the process, if applicable. Optional.
When omitted it defaults to ‘1.0.0’.






	
wsdl

	A URL of WSDL document describing this process. Optional.












eoxserver.services.ows.wps.test_allowed_values module




eoxserver.services.ows.wps.test_data_types module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.testing package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.testing package


Submodules




eoxserver.testing.xcomp module

Simple XML documets’ comparator.


	
exception eoxserver.testing.xcomp.XMLError

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

XML base error error






	
exception eoxserver.testing.xcomp.XMLMismatchError

	Bases: eoxserver.testing.xcomp.XMLError

XML mismatch error






	
exception eoxserver.testing.xcomp.XMLParseError

	Bases: eoxserver.testing.xcomp.XMLError

XML parse error






	
eoxserver.testing.xcomp.xmlCompareDOMs(xml0, xml1, verbose=False)

	Compare two XML documents passed as DOM trees (xml.dom.minidom).






	
eoxserver.testing.xcomp.xmlCompareFiles(src0, src1, verbose=False)

	Compare two XML documents passed as filenames, file or file-like objects.






	
eoxserver.testing.xcomp.xmlCompareStrings(str0, str1, verbose=False)

	Compare two XML documents passed as strings.








Module contents







          

      

      

    

  

  
    
    
    eoxserver.webclient package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.webclient package


Submodules




eoxserver.webclient.models module




eoxserver.webclient.urls module




eoxserver.webclient.views module




Module contents







          

      

      

    

  

  
    
    
    License
    
    

    
 
  
  

    
      
          
            
  
License


EOxServer Open License


EOxServer Open License

Version 1, 8 June 2011



Copyright (C) 2011 EOX IT Services GmbH

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies of this Software or works derived from this Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.




EOxServer-Soap Proxy Open License

Soap Proxy is Copyright (C) 2011 ANF DATA Spol. s r.o. Prague.
The terms of the license are otherwise identical to those of the main
EOxServer Open License.







          

      

      

    

  

  
    
    
    Credits
    
    

    
 
  
  

    
      
          
            
  
Credits


[image: _images/HMA_Logo.jpg]
 [http://rssportal.esa.int/tiki-index.php?page=Open%20Software]

Work on EOxServer has been partly funded by the European Space Agency (ESA) [http://www.esa.int/esaMI/ESRIN_SITE/]
in the frame of the HMA-FO [http://wiki.services.eoportal.org/tiki-index.php?page=HMA-FO] and O3S [http://wiki.services.eoportal.org/tiki-index.php?page=O3S] projects.





          

      

      

    

  

  
    
    
    Python Module Index
    
    

    

 


  
  

    
      
          
            

   Python Module Index


   
   e
   


   
     		 	

     		
       e	

     
       	[image: -]
       	
       eoxserver	
       

     
       	
       	   
       eoxserver.backends	
       

     
       	
       	   
       eoxserver.backends.interfaces	
       

     
       	
       	   
       eoxserver.backends.packages	
       

     
       	
       	   
       eoxserver.backends.storages	
       

     
       	
       	   
       eoxserver.contrib	
       

     
       	
       	   
       eoxserver.contrib.gdal	
       

     
       	
       	   
       eoxserver.contrib.gdal_array	
       

     
       	
       	   
       eoxserver.contrib.ogr	
       

     
       	
       	   
       eoxserver.contrib.osr	
       

     
       	
       	   
       eoxserver.contrib.vrt	
       

     
       	
       	   
       eoxserver.contrib.vsi	
       

     
       	
       	   
       eoxserver.processing	
       

     
       	
       	   
       eoxserver.processing.gdal	
       

     
       	
       	   
       eoxserver.processing.gdal.vrt	
       

     
       	
       	   
       eoxserver.resources	
       

     
       	
       	   
       eoxserver.resources.coverages	
       

     
       	
       	   
       eoxserver.resources.coverages.metadata	
       

     
       	
       	   
       eoxserver.resources.coverages.metadata.formats	
       

     
       	
       	   
       eoxserver.resources.coverages.metadata.interfaces	
       

     
       	
       	   
       eoxserver.resources.processes	
       

     
       	
       	   
       eoxserver.services	
       

     
       	
       	   
       eoxserver.services.auth	
       

     
       	
       	   
       eoxserver.services.auth.exceptions	
       

     
       	
       	   
       eoxserver.services.auth.interfaces	
       

     
       	
       	   
       eoxserver.services.exceptions	
       

     
       	
       	   
       eoxserver.services.gdal	
       

     
       	
       	   
       eoxserver.services.gdal.wcs	
       

     
       	
       	   
       eoxserver.services.gml	
       

     
       	
       	   
       eoxserver.services.gml.v32	
       

     
       	
       	   
       eoxserver.services.mapserver	
       

     
       	
       	   
       eoxserver.services.mapserver.connectors	
       

     
       	
       	   
       eoxserver.services.mapserver.interfaces	
       

     
       	
       	   
       eoxserver.services.mapserver.wcs	
       

     
       	
       	   
       eoxserver.services.mapserver.wms	
       

     
       	
       	   
       eoxserver.services.mapserver.wms.layerfactories	
       

     
       	
       	   
       eoxserver.services.mapserver.wms.styleapplicators	
       

     
       	
       	   
       eoxserver.services.native	
       

     
       	
       	   
       eoxserver.services.native.wcs	
       

     
       	
       	   
       eoxserver.services.ows	
       

     
       	
       	   
       eoxserver.services.ows.common	
       

     
       	
       	   
       eoxserver.services.ows.common.v11	
       

     
       	
       	   
       eoxserver.services.ows.common.v20	
       

     
       	
       	   
       eoxserver.services.ows.interfaces	
       

     
       	
       	   
       eoxserver.services.ows.version	
       

     
       	
       	   
       eoxserver.services.ows.wcs	
       

     
       	
       	   
       eoxserver.services.ows.wcs.interfaces	
       

     
       	
       	   
       eoxserver.services.ows.wcs.parameters	
       

     
       	
       	   
       eoxserver.services.ows.wcs.v10	
       

     
       	
       	   
       eoxserver.services.ows.wcs.v11	
       

     
       	
       	   
       eoxserver.services.ows.wcs.v20	
       

     
       	
       	   
       eoxserver.services.ows.wcs.v20.encodings	
       

     
       	
       	   
       eoxserver.services.ows.wcs.v20.packages	
       

     
       	
       	   
       eoxserver.services.ows.wms	
       

     
       	
       	   
       eoxserver.services.ows.wms.exceptions	
       

     
       	
       	   
       eoxserver.services.ows.wms.interfaces	
       

     
       	
       	   
       eoxserver.services.ows.wms.v10	
       

     
       	
       	   
       eoxserver.services.ows.wms.v11	
       

     
       	
       	   
       eoxserver.services.ows.wms.v13	
       

     
       	
       	   
       eoxserver.services.ows.wps	
       

     
       	
       	   
       eoxserver.services.ows.wps.exceptions	
       

     
       	
       	   
       eoxserver.services.ows.wps.interfaces	
       

     
       	
       	   
       eoxserver.services.ows.wps.processes	
       

     
       	
       	   
       eoxserver.services.ows.wps.v10	
       

     
       	
       	   
       eoxserver.services.parameters	
       

     
       	
       	   
       eoxserver.testing	
       

     
       	
       	   
       eoxserver.testing.xcomp	
       

     
       	
       	   
       eoxserver.views	
       

     
       	
       	   
       eoxserver.webclient	
       

   



          

      

      

    

  

  
    
    
    Index
    
    

    
 
  
  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 


A


  	
      	AbstractStorageInterface (class in eoxserver.backends.interfaces)


      	accept_formats (eoxserver.services.parameters.CapabilitiesRenderParams attribute)


      	accept_languages (eoxserver.services.parameters.CapabilitiesRenderParams attribute)


      	add_band() (eoxserver.contrib.vrt.VRTBuilder method)

      
        	(eoxserver.contrib.vrt.VRTBuilder2 method)


      


      	add_simple_source() (eoxserver.contrib.vrt.VRTBuilder method)

      
        	(eoxserver.contrib.vrt.VRTBuilder2 method)


      


  

  	
      	add_to_package() (eoxserver.services.ows.wcs.interfaces.PackageWriterInterface method)


      	apply() (eoxserver.services.mapserver.interfaces.StyleApplicatorInterface method)


      	AsyncBackendInterface (class in eoxserver.services.ows.wps.interfaces)


      	asynchronous (eoxserver.services.ows.wps.interfaces.ProcessInterface attribute)


      	AuthorisationException


      	authorize() (eoxserver.services.auth.interfaces.PolicyDecisionPointInterface method)


      	Autotest


  





B


  	
      	build() (eoxserver.contrib.vrt.VRTBuilder2 method)


  

  	
      	build_sources() (eoxserver.contrib.vrt.VRTBuilder2 method)


  





C


  	
      	cancel() (eoxserver.services.ows.wps.interfaces.AsyncBackendInterface method)


      	CapabilitiesRenderParams (class in eoxserver.services.parameters)


      	cleanup() (eoxserver.services.ows.wcs.interfaces.PackageWriterInterface method)


      	close() (eoxserver.contrib.vsi.TemporaryVSIFile method)

      
        	(eoxserver.contrib.vsi.VSIFile method)


      


      	closed (eoxserver.contrib.vsi.VSIFile attribute)


      	code (eoxserver.services.auth.exceptions.AuthorisationException attribute)

      
        	(eoxserver.services.exceptions.InterpolationMethodNotSupportedException attribute)


        	(eoxserver.services.exceptions.InvalidAxisLabelException attribute)


        	(eoxserver.services.exceptions.InvalidFieldSequenceException attribute)


        	(eoxserver.services.exceptions.InvalidOutputCrsException attribute)


        	(eoxserver.services.exceptions.InvalidScaleExtentException attribute)


        	(eoxserver.services.exceptions.InvalidScaleFactorException attribute)


        	(eoxserver.services.exceptions.InvalidSubsettingCrsException attribute)


        	(eoxserver.services.exceptions.InvalidSubsettingException attribute)


        	(eoxserver.services.exceptions.NoSuchCoverageException attribute)


        	(eoxserver.services.exceptions.NoSuchDatasetSeriesOrCoverageException attribute)


        	(eoxserver.services.exceptions.NoSuchFieldException attribute)


        	(eoxserver.services.exceptions.OperationNotSupportedException attribute)


        	(eoxserver.services.exceptions.RenderException attribute)


        	(eoxserver.services.exceptions.ScaleAxisUndefinedException attribute)


        	(eoxserver.services.exceptions.VersionNegotiationException attribute)


        	(eoxserver.services.exceptions.VersionNotSupportedException attribute)


        	(eoxserver.services.ows.wms.exceptions.InvalidCRS attribute)


        	(eoxserver.services.ows.wms.exceptions.InvalidFormat attribute)


        	(eoxserver.services.ows.wms.exceptions.LayerNotDefined attribute)


      


  

  	
      	Commit Management


      	Configuration


      	Configuration Options


      	connect() (eoxserver.backends.interfaces.ConnectedStorageInterface method)

      
        	(eoxserver.services.mapserver.interfaces.ConnectorInterface method)


      


      	ConnectedStorageInterface (class in eoxserver.backends.interfaces)


      	ConnectorInterface (class in eoxserver.services.mapserver.interfaces)


      	constraints (eoxserver.services.ows.interfaces.ServiceHandlerInterface attribute)


      	copy_gcps() (eoxserver.contrib.vrt.VRTBuilder method)


      	copy_metadata() (eoxserver.contrib.vrt.VRTBuilder method)


      	coverage (eoxserver.services.ows.wcs.parameters.CoverageRenderParams attribute)


      	coverage_id (eoxserver.services.ows.wcs.parameters.CoverageRenderParams attribute)


      	coverage_id_key_name (eoxserver.services.ows.wcs.parameters.CoverageRenderParams attribute)


      	coverage_ids (eoxserver.services.ows.wcs.parameters.CoverageDescriptionRenderParams attribute)


      	coverage_ids_key_name (eoxserver.services.ows.wcs.parameters.CoverageDescriptionRenderParams attribute)


      	CoverageDescriptionRenderParams (class in eoxserver.services.ows.wcs.parameters)


      	CoverageRenderParams (class in eoxserver.services.ows.wcs.parameters)


      	coverages (eoxserver.services.ows.wcs.parameters.CoverageDescriptionRenderParams attribute)

      
        	(eoxserver.services.parameters.CapabilitiesRenderParams attribute)


      


      	create_package() (eoxserver.services.ows.wcs.interfaces.PackageWriterInterface method)


      	create_simple_vrt() (in module eoxserver.processing.gdal.vrt)


      	Credits, [1]


  





D


  	
      	Data Access Layer, [1]


      	Data Integration Layer, [1]


      	dataset (eoxserver.contrib.vrt.VRTBuilder attribute)


      	Demonstration


      	Dependencies


      	Deployment


      	DescribeCoverage (Demonstration)

      
        	(EO-WCS Request Parameters)


      


  

  	
      	DescribeEOCoverageSet (Demonstration)

      
        	(EO-WCS Request Parameters)


      


      	description (eoxserver.services.ows.wps.interfaces.ProcessInterface attribute)


      	disconnect() (eoxserver.services.mapserver.interfaces.ConnectorInterface method)


      	Distribution Core


      	dynamic binding


  





E


  	
      	EncodingExtensionInterface (class in eoxserver.services.ows.wcs.interfaces)


      	EO-WCS Request Parameters


      	eoxserver (module)


      	EOxServer Configuration


      	EOxServer Dependencies


      	EOxServer Deployment


      	EOxServer Installation


      	EOxServer Instance Creation


      	EOxServer instances


      	EOxServer Migration


      	EOxServer Open License


      	EOxServer Service Instance Creation


      	EOxServer Upgrade


      	EOxServer-SoapProxy Open License


      	eoxserver.backends (module)


      	eoxserver.backends.interfaces (module)


      	eoxserver.backends.packages (module)


      	eoxserver.backends.storages (module)


      	eoxserver.contrib (module)


      	eoxserver.contrib.gdal (module)


      	eoxserver.contrib.gdal_array (module)


      	eoxserver.contrib.ogr (module)


      	eoxserver.contrib.osr (module)


      	eoxserver.contrib.vrt (module)


      	eoxserver.contrib.vsi (module)


      	eoxserver.processing (module)


      	eoxserver.processing.gdal (module)


      	eoxserver.processing.gdal.vrt (module)


      	eoxserver.resources (module)


      	eoxserver.resources.coverages (module)


      	eoxserver.resources.coverages.metadata (module)


      	eoxserver.resources.coverages.metadata.formats (module)


      	eoxserver.resources.coverages.metadata.interfaces (module)


      	eoxserver.resources.processes (module)


      	eoxserver.services (module)


      	eoxserver.services.auth (module)


      	eoxserver.services.auth.exceptions (module)


      	eoxserver.services.auth.interfaces (module)


      	eoxserver.services.exceptions (module)


      	eoxserver.services.gdal (module)


      	eoxserver.services.gdal.wcs (module)


      	eoxserver.services.gml (module)


      	eoxserver.services.gml.v32 (module)


  

  	
      	eoxserver.services.mapserver (module)


      	eoxserver.services.mapserver.connectors (module)


      	eoxserver.services.mapserver.interfaces (module)


      	eoxserver.services.mapserver.wcs (module)


      	eoxserver.services.mapserver.wms (module)


      	eoxserver.services.mapserver.wms.layerfactories (module)


      	eoxserver.services.mapserver.wms.styleapplicators (module)


      	eoxserver.services.native (module)


      	eoxserver.services.native.wcs (module)


      	eoxserver.services.ows (module)


      	eoxserver.services.ows.common (module)


      	eoxserver.services.ows.common.v11 (module)


      	eoxserver.services.ows.common.v20 (module)


      	eoxserver.services.ows.interfaces (module)


      	eoxserver.services.ows.version (module)


      	eoxserver.services.ows.wcs (module)


      	eoxserver.services.ows.wcs.interfaces (module)


      	eoxserver.services.ows.wcs.parameters (module)


      	eoxserver.services.ows.wcs.v10 (module)


      	eoxserver.services.ows.wcs.v11 (module)


      	eoxserver.services.ows.wcs.v20 (module)


      	eoxserver.services.ows.wcs.v20.encodings (module)


      	eoxserver.services.ows.wcs.v20.packages (module)


      	eoxserver.services.ows.wms (module)


      	eoxserver.services.ows.wms.exceptions (module)


      	eoxserver.services.ows.wms.interfaces (module)


      	eoxserver.services.ows.wms.v10 (module)


      	eoxserver.services.ows.wms.v11 (module)


      	eoxserver.services.ows.wms.v13 (module)


      	eoxserver.services.ows.wps (module)


      	eoxserver.services.ows.wps.exceptions (module)


      	eoxserver.services.ows.wps.interfaces (module)


      	eoxserver.services.ows.wps.processes (module)


      	eoxserver.services.ows.wps.v10 (module)


      	eoxserver.services.parameters (module)


      	eoxserver.testing (module)


      	eoxserver.testing.xcomp (module)


      	eoxserver.views (module)


      	eoxserver.webclient (module)


      	ExceptionHandlerInterface (class in eoxserver.services.ows.interfaces)


      	execute() (eoxserver.services.ows.wps.interfaces.AsyncBackendInterface method)

      
        	(eoxserver.services.ows.wps.interfaces.ProcessInterface method)


      


      	ExecuteError


      	extract() (eoxserver.backends.interfaces.PackageInterface method)


  





F


  	
      	filename (eoxserver.contrib.vsi.VSIFile attribute)


      	FileSizeExceeded


      	FileStorageInterface (class in eoxserver.backends.interfaces)


      	format() (eoxserver.resources.coverages.metadata.interfaces.GDALDatasetMetadataReaderInterface method)

      
        	(eoxserver.resources.coverages.metadata.interfaces.MetadataReaderInterface method)


      


  

  	
      	formats (eoxserver.resources.coverages.metadata.interfaces.MetadataWriterInterface attribute)


      	from_buffer() (eoxserver.contrib.vsi.TemporaryVSIFile class method)


      	from_dataset() (eoxserver.contrib.vrt.VRTBuilder class method)


  





G


  	
      	GDALDatasetMetadataReaderInterface (class in eoxserver.resources.coverages.metadata.interfaces)


      	generate() (eoxserver.services.mapserver.interfaces.LayerFactoryInterface method)


      	generate_group() (eoxserver.services.mapserver.interfaces.LayerFactoryInterface method)


      	get_file_extension() (eoxserver.services.ows.wcs.interfaces.PackageWriterInterface method)


      	get_mime_type() (eoxserver.services.ows.wcs.interfaces.PackageWriterInterface method)


      	get_response_url() (eoxserver.services.ows.wps.interfaces.AsyncBackendInterface method)


      	get_status() (eoxserver.services.ows.wps.interfaces.AsyncBackendInterface method)


  

  	
      	get_version() (in module eoxserver)


      	get_vrt_driver() (in module eoxserver.contrib.vrt)


      	GetCapabilities (Demonstration)

      
        	(EO-WCS Request Parameters)


      


      	GetCoverage (Demonstration)

      
        	(EO-WCS Request Parameters)


      


      	GetServiceHandlerInterface (class in eoxserver.services.ows.interfaces)


      	Global Use Case


  





H


  	
      	handle() (eoxserver.services.ows.interfaces.ServiceHandlerInterface method)


      	handle_exception() (eoxserver.services.ows.interfaces.ExceptionHandlerInterface method)


      	http_status_code (eoxserver.services.ows.wps.exceptions.NoApplicableCode attribute)

      
        	(eoxserver.services.ows.wps.exceptions.NotEnoughStorage attribute)


        	(eoxserver.services.ows.wps.exceptions.OWS10Exception attribute)


        	(eoxserver.services.ows.wps.exceptions.ServerBusy attribute)


      


  

  	
      	HTTPMethodNotAllowedError


  





I


  	
      	identifier (eoxserver.services.ows.wps.interfaces.ProcessInterface attribute)


      	index (eoxserver.services.ows.interfaces.ServiceHandlerInterface attribute)


      	index() (in module eoxserver.views)


      	inputs (eoxserver.services.ows.wps.interfaces.ProcessInterface attribute)


      	Installation


      	Installation on CentOS


      	Instance Creation, [1]


      	InterpolationMethodNotSupportedException


      	InvalidAxisLabelException


      	InvalidCRS


      	InvalidFieldSequenceException


      	InvalidFormat


      	InvalidInputError


  

  	
      	InvalidInputReferenceError


      	InvalidInputValueError


      	InvalidOutputCrsException


      	InvalidOutputDefError


      	InvalidOutputError


      	InvalidOutputValueError


      	InvalidParameterValue


      	InvalidRequestException


      	InvalidScaleExtentException


      	InvalidScaleFactorException


      	InvalidSubsettingCrsException


      	InvalidSubsettingException


      	IsSame() (eoxserver.contrib.osr.SpatialReference method)


  





L


  	
      	LayerFactoryInterface (class in eoxserver.services.mapserver.interfaces)


      	LayerNotDefined


      	License


      	list_contents() (eoxserver.backends.interfaces.PackageInterface method)


      	list_files() (eoxserver.backends.interfaces.FileStorageInterface method)


      	locator (eoxserver.services.exceptions.InterpolationMethodNotSupportedException attribute)

      
        	(eoxserver.services.exceptions.InvalidOutputCrsException attribute)


        	(eoxserver.services.exceptions.InvalidSubsettingCrsException attribute)


        	(eoxserver.services.exceptions.InvalidSubsettingException attribute)


        	(eoxserver.services.exceptions.LocatorListException attribute)


        	(eoxserver.services.exceptions.OperationNotSupportedException attribute)


        	(eoxserver.services.ows.wms.exceptions.InvalidFormat attribute)


        	(eoxserver.services.ows.wms.exceptions.LayerNotDefined attribute)


      


  

  	
      	LocatorListException


  





M


  	
      	Mailing List


      	major (eoxserver.services.ows.version.Version attribute)


      	metadata (eoxserver.services.ows.wps.interfaces.ProcessInterface attribute)


      	MetadataReaderInterface (class in eoxserver.resources.coverages.metadata.interfaces)


  

  	
      	MetadataWriterInterface (class in eoxserver.resources.coverages.metadata.interfaces)


      	Migration


      	minor (eoxserver.services.ows.version.Version attribute)


      	MissingParameterValue


      	MissingRequiredInputError


  





N


  	
      	name (eoxserver.backends.interfaces.AbstractStorageInterface attribute)

      
        	(eoxserver.backends.interfaces.PackageInterface attribute)


      


      	NoApplicableCode


      	NoSuchCoverageException


  

  	
      	NoSuchDatasetSeriesOrCoverageException


      	NoSuchFieldException


      	NoSuchProcessError


      	NotEnoughStorage


  





O


  	
      	open() (in module eoxserver.contrib.vsi)


      	OperationNotSupportedException


  

  	
      	outputs (eoxserver.services.ows.wps.interfaces.ProcessInterface attribute)


      	OWS10Exception


  





P


  	
      	PackageInterface (class in eoxserver.backends.interfaces)


      	PackageWriterInterface (class in eoxserver.services.ows.wcs.interfaces)


      	parse_encoding_params() (eoxserver.services.ows.wcs.interfaces.EncodingExtensionInterface method)


      	parse_version_string() (in module eoxserver.services.ows.version)


      	pause() (eoxserver.services.ows.wps.interfaces.AsyncBackendInterface method)


      	pdp_type (eoxserver.services.auth.interfaces.PolicyDecisionPointInterface attribute)


      	PolicyDecisionPointInterface (class in eoxserver.services.auth.interfaces)


      	PostServiceHandlerInterface (class in eoxserver.services.ows.interfaces)


  

  	
      	Processing Chains


      	Processing Layer, [1]


      	ProcessInterface (class in eoxserver.services.ows.wps.interfaces)


      	profiles (eoxserver.services.ows.wps.interfaces.ProcessInterface attribute)


      	proj (eoxserver.contrib.osr.SpatialReference attribute)


      	Project Steering Committee (PSC) Guidelines


      	purge() (eoxserver.services.ows.wps.interfaces.AsyncBackendInterface method)


      	
    Python Enhancement Proposals

      
        	PEP 333


      


  





R


  	
      	read() (eoxserver.contrib.vsi.VSIFile method)

      
        	(eoxserver.resources.coverages.metadata.interfaces.MetadataReaderInterface method)


      


      	read_ds() (eoxserver.resources.coverages.metadata.interfaces.GDALDatasetMetadataReaderInterface method)


      	Recommendations for Operational Installation


      	Release Guidelines


      	render() (eoxserver.services.ows.wcs.interfaces.WCSCapabilitiesRendererInterface method)

      
        	(eoxserver.services.ows.wcs.interfaces.WCSCoverageDescriptionRendererInterface method)


        	(eoxserver.services.ows.wcs.interfaces.WCSCoverageRendererInterface method)


        	(eoxserver.services.ows.wms.interfaces.WMSCapabilitiesRendererInterface method)


        	(eoxserver.services.ows.wms.interfaces.WMSFeatureInfoRendererInterface method)


        	(eoxserver.services.ows.wms.interfaces.WMSLegendGraphicRendererInterface method)


        	(eoxserver.services.ows.wms.interfaces.WMSMapRendererInterface method)


      


      	RenderException


      	RenderParameters (class in eoxserver.services.parameters)


  

  	
      	request (eoxserver.services.ows.interfaces.ExceptionHandlerInterface attribute)

      
        	(eoxserver.services.ows.interfaces.ServiceHandlerInterface attribute)


        	(eoxserver.services.parameters.CapabilitiesRenderParams attribute)


      


      	requires_connection (eoxserver.services.mapserver.interfaces.LayerFactoryInterface attribute)


      	resume() (eoxserver.services.ows.wps.interfaces.AsyncBackendInterface method)


      	retention_period (eoxserver.services.ows.wps.interfaces.ProcessInterface attribute)


      	retrieve() (eoxserver.backends.interfaces.FileStorageInterface method)


      	revision (eoxserver.services.ows.version.Version attribute)


      	
    RFC

      
        	RFC 0


        	RFC 1


        	RFC 7


        	RFC 8


        	RFC Guidelines


        	RFC Policies


      


  





S


  	
      	ScaleAxisUndefinedException


      	sections (eoxserver.services.parameters.CapabilitiesRenderParams attribute)


      	seek() (eoxserver.contrib.vsi.VSIFile method)


      	ServerBusy


      	service (eoxserver.services.ows.interfaces.ExceptionHandlerInterface attribute)

      
        	(eoxserver.services.ows.interfaces.ServiceHandlerInterface attribute)


      


      	Service Layer, [1]


      	ServiceHandlerInterface (class in eoxserver.services.ows.interfaces)


      	ServiceNotSupportedException


      	set_geotransform() (eoxserver.contrib.vrt.VRTBuilder2 method)


      	size (eoxserver.contrib.vsi.VSIFile attribute)


      	
    software architecture

      
        	draft architecture


        	layers


        	overview


        	release 0.1.1


        	requirements


      


      	SpatialReference (class in eoxserver.contrib.osr)


  

  	
      	srid (eoxserver.contrib.osr.SpatialReference attribute)


      	StorageNotSupported


      	StyleApplicatorInterface (class in eoxserver.services.mapserver.interfaces)


      	suffixes (eoxserver.services.mapserver.interfaces.LayerFactoryInterface attribute)

      
        	(eoxserver.services.ows.wms.interfaces.WMSFeatureInfoRendererInterface attribute)


        	(eoxserver.services.ows.wms.interfaces.WMSLegendGraphicRendererInterface attribute)


        	(eoxserver.services.ows.wms.interfaces.WMSMapRendererInterface attribute)


      


      	Supported CRSs and Their Configuration


      	Supported Raster File Formats and Their Configuration


      	supported_versions (eoxserver.services.ows.wps.interfaces.AsyncBackendInterface attribute)


      	supports() (eoxserver.services.mapserver.interfaces.ConnectorInterface method)

      
        	(eoxserver.services.ows.wcs.interfaces.EncodingExtensionInterface method)


        	(eoxserver.services.ows.wcs.interfaces.PackageWriterInterface method)


        	(eoxserver.services.ows.wcs.interfaces.WCSCapabilitiesRendererInterface method)


        	(eoxserver.services.ows.wcs.interfaces.WCSCoverageDescriptionRendererInterface method)


        	(eoxserver.services.ows.wcs.interfaces.WCSCoverageRendererInterface method)


      


      	swap_axes (eoxserver.contrib.osr.SpatialReference attribute)


      	synchronous (eoxserver.services.ows.wps.interfaces.ProcessInterface attribute)


  





T


  	
      	tell() (eoxserver.contrib.vsi.VSIFile method)


      	TemporaryVSIFile (class in eoxserver.contrib.vsi)


  

  	
      	test() (eoxserver.resources.coverages.metadata.interfaces.MetadataReaderInterface method)


      	test_ds() (eoxserver.resources.coverages.metadata.interfaces.GDALDatasetMetadataReaderInterface method)


      	title (eoxserver.services.ows.wps.interfaces.ProcessInterface attribute)


  





U


  	
      	updatesequence (eoxserver.services.parameters.CapabilitiesRenderParams attribute)


      	Upgrade


  

  	
      	url (eoxserver.contrib.osr.SpatialReference attribute)


      	Use Case


  





V


  	
      	validate() (eoxserver.backends.interfaces.AbstractStorageInterface method)


      	Version (class in eoxserver.services.ows.version)


      	version (eoxserver.services.ows.wps.interfaces.ProcessInterface attribute)

      
        	(eoxserver.services.parameters.CapabilitiesRenderParams attribute)


        	(eoxserver.services.parameters.VersionedParams attribute)


      


      	VersionedParams (class in eoxserver.services.parameters)


      	VersionNegotiationException


  

  	
      	VersionNegotiationFailed


      	VersionNegotiationInterface (class in eoxserver.services.ows.interfaces)


      	VersionNotSupportedException


      	versions (eoxserver.services.ows.interfaces.ExceptionHandlerInterface attribute)

      
        	(eoxserver.services.ows.interfaces.ServiceHandlerInterface attribute)


      


      	VRTBuilder (class in eoxserver.contrib.vrt)


      	VRTBuilder2 (class in eoxserver.contrib.vrt)


      	VSIFile (class in eoxserver.contrib.vsi)


  





W


  	
      	warped_gcps() (eoxserver.contrib.vrt.VRTBuilder2 method)


      	WCSCapabilitiesRendererInterface (class in eoxserver.services.ows.wcs.interfaces)


      	WCSCapabilitiesRenderParams (class in eoxserver.services.ows.wcs.parameters)


      	WCSCoverageDescriptionRendererInterface (class in eoxserver.services.ows.wcs.interfaces)


      	WCSCoverageRendererInterface (class in eoxserver.services.ows.wcs.interfaces)


      	WCSParamsMixIn (class in eoxserver.services.ows.wcs.parameters)


      	wkt (eoxserver.contrib.osr.SpatialReference attribute)


  

  	
      	WMSCapabilitiesRendererInterface (class in eoxserver.services.ows.wms.interfaces)


      	WMSFeatureInfoRendererInterface (class in eoxserver.services.ows.wms.interfaces)


      	WMSLegendGraphicRendererInterface (class in eoxserver.services.ows.wms.interfaces)


      	WMSMapRendererInterface (class in eoxserver.services.ows.wms.interfaces)


      	write() (eoxserver.contrib.vsi.VSIFile method)

      
        	(eoxserver.resources.coverages.metadata.interfaces.MetadataWriterInterface method)


      


      	wsdl (eoxserver.services.ows.wps.interfaces.ProcessInterface attribute)


  





X


  	
      	xml (eoxserver.contrib.osr.SpatialReference attribute)


      	xmlCompareDOMs() (in module eoxserver.testing.xcomp)


      	xmlCompareFiles() (in module eoxserver.testing.xcomp)


  

  	
      	xmlCompareStrings() (in module eoxserver.testing.xcomp)


      	XMLError


      	XMLMismatchError


      	XMLParseError


  







          

      

      

    

  

  
    
    
    eoxserver.services.ows.wcs.v20 package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.ows.wcs.v20 package


Subpackages



	eoxserver.services.ows.wcs.v20.encodings package
	Submodules

	eoxserver.services.ows.wcs.v20.encodings.geotiff module

	Module contents





	eoxserver.services.ows.wcs.v20.packages package
	Submodules

	eoxserver.services.ows.wcs.v20.packages.tar module

	eoxserver.services.ows.wcs.v20.packages.zip module

	Module contents












Submodules




eoxserver.services.ows.wcs.v20.describecoverage module




eoxserver.services.ows.wcs.v20.describeeocoverageset module




eoxserver.services.ows.wcs.v20.encoders module




eoxserver.services.ows.wcs.v20.exceptionhandler module




eoxserver.services.ows.wcs.v20.getcapabilities module




eoxserver.services.ows.wcs.v20.getcoverage module




eoxserver.services.ows.wcs.v20.geteocoverageset module




eoxserver.services.ows.wcs.v20.parameters module




eoxserver.services.ows.wcs.v20.util module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.ows.wcs.v11 package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.ows.wcs.v11 package


Submodules




eoxserver.services.ows.wcs.v11.describecoverage module




eoxserver.services.ows.wcs.v11.exceptionhandler module




eoxserver.services.ows.wcs.v11.getcapabilities module




eoxserver.services.ows.wcs.v11.getcoverage module




eoxserver.services.ows.wcs.v11.parameters module




eoxserver.services.ows.wcs.v11.util module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.ows.wps.processes package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.ows.wps.processes package


Submodules




eoxserver.services.ows.wps.processes.get_time_data module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.ows.wms.v11 package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.ows.wms.v11 package


Submodules




eoxserver.services.ows.wms.v11.getcapabilities module




eoxserver.services.ows.wms.v11.getfeatureinfo module




eoxserver.services.ows.wms.v11.getmap module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.ows.wps.v10.encoders package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.ows.wps.v10.encoders package


Submodules




eoxserver.services.ows.wps.v10.encoders.base module




eoxserver.services.ows.wps.v10.encoders.capabilities module




eoxserver.services.ows.wps.v10.encoders.execute_response module




eoxserver.services.ows.wps.v10.encoders.execute_response_raw module




eoxserver.services.ows.wps.v10.encoders.parameters module




eoxserver.services.ows.wps.v10.encoders.process_description module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.ows.wcs.v10 package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.ows.wcs.v10 package


Submodules




eoxserver.services.ows.wcs.v10.describecoverage module




eoxserver.services.ows.wcs.v10.exceptionhandler module




eoxserver.services.ows.wcs.v10.getcapabilities module




eoxserver.services.ows.wcs.v10.getcoverage module




eoxserver.services.ows.wcs.v10.parameters module




eoxserver.services.ows.wcs.v10.util module




Module contents







          

      

      

    

  

  
    
    
    eoxserver.services.ows.wps.v10 package
    
    

    
 
  
  

    
      
          
            
  
eoxserver.services.ows.wps.v10 package


Subpackages



	eoxserver.services.ows.wps.v10.encoders package
	Submodules

	eoxserver.services.ows.wps.v10.encoders.base module

	eoxserver.services.ows.wps.v10.encoders.capabilities module

	eoxserver.services.ows.wps.v10.encoders.execute_response module

	eoxserver.services.ows.wps.v10.encoders.execute_response_raw module

	eoxserver.services.ows.wps.v10.encoders.parameters module

	eoxserver.services.ows.wps.v10.encoders.process_description module

	Module contents












Submodules




eoxserver.services.ows.wps.v10.describeprocess module




eoxserver.services.ows.wps.v10.exceptionhandler module




eoxserver.services.ows.wps.v10.execute module




eoxserver.services.ows.